Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Patterns of protective associations differ for antibodies to &ITP&IT. &ITfalciparum&IT-infected erythrocytes and merozoites in immunity against malaria in children
    Chan, J-A ; Stanisic, D ; Duffy, MF ; Robinson, LJ ; Lin, E ; Kazura, JW ; King, CL ; Siba, PM ; Fowkes, FJ ; Mueller, I ; Beeson, JG (WILEY, 2017-12)
    Acquired antibodies play an important role in immunity to P. falciparum malaria and are typically directed towards surface antigens expressed by merozoites and infected erythrocytes (IEs). The importance of specific IE surface antigens as immune targets remains unclear. We evaluated antibodies and protective associations in two cohorts of children in Papua New Guinea. We used genetically-modified P. falciparum to evaluate the importance of PfEMP1 and a P. falciparum isolate with a virulent phenotype. Our findings suggested that PfEMP1 was the dominant target of antibodies to the IE surface, including functional antibodies that promoted opsonic phagocytosis by monocytes. Antibodies were associated with increasing age and concurrent parasitemia, and were higher among children exposed to a higher force-of-infection as determined using molecular detection. Antibodies to IE surface antigens were consistently associated with reduced risk of malaria in both younger and older children. However, protective associations for antibodies to merozoite surface antigens were only observed in older children. This suggests that antibodies to IE surface antigens, particularly PfEMP1, play an earlier role in acquired immunity to malaria, whereas greater exposure is required for protective antibodies to merozoite antigens. These findings have implications for vaccine design and serosurveillance of malaria transmission and immunity.
  • Item
    Thumbnail Image
    Antibody Targets on the Surface of Plasmodium falciparum-Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children
    Chan, J-A ; Boyle, MJ ; Moore, KA ; Reiling, L ; Lin, Z ; Hasang, W ; Avril, M ; Manning, L ; Mueller, I ; Laman, M ; Davis, T ; Smith, JD ; Rogerson, SJ ; Simpson, JA ; Fowkes, FJI ; Beeson, JG (Oxford University Press, 2019-03-01)
    BACKGROUND: Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature contributes to pathogenesis of severe malaria in children. This mechanism is mediated by antigens expressed on the IE surface. However, knowledge of specific targets and functions of antibodies to IE surface antigens that protect against severe malaria is limited. METHODS: Antibodies to IE surface antigens were examined in a case-control study of young children in Papua New Guinea presenting with severe or uncomplicated malaria (n = 448), using isolates with a virulent phenotype associated with severe malaria, and functional opsonic phagocytosis assays. We used genetically modified isolates and recombinant P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains to quantify PfEMP1 as a target of antibodies associated with disease severity. RESULTS: Antibodies to the IE surface and recombinant PfEMP1 domains were significantly higher in uncomplicated vs severe malaria and were boosted following infection. The use of genetically modified P. falciparum revealed that PfEMP1 was a major target of antibodies and that PfEMP1-specific antibodies were associated with reduced odds of severe malaria. Furthermore, antibodies promoting the opsonic phagocytosis of IEs by monocytes were lower in those with severe malaria. CONCLUSIONS: Findings suggest that PfEMP1 is a dominant target of antibodies associated with reduced risk of severe malaria, and function in part by promoting opsonic phagocytosis.
  • Item
    Thumbnail Image
    The Plasmodium falciparum Erythrocyte Invasion Ligand Pfrh4 as a Target of Functional and Protective Human Antibodies against Malaria
    Reiling, L ; Richards, JS ; Fowkes, FJI ; Wilson, DW ; Chokejindachai, W ; Barry, AE ; Tham, W-H ; Stubbs, J ; Langer, C ; Donelson, J ; Michon, P ; Tavul, L ; Crabb, BS ; Siba, PM ; Cowman, AF ; Mueller, I ; Beeson, JG ; Tetteh, KKA (PUBLIC LIBRARY SCIENCE, 2012-09-20)
    BACKGROUND: Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4) is important for invasion of human erythrocytes and may therefore be a target of protective immunity. METHODS: IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG). Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. RESULTS: Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. CONCLUSIONS: Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.
  • Item
    Thumbnail Image
    Quantifying the Importance of MSP1-19 as a Target of Growth-Inhibitory and Protective Antibodies against Plasmodium falciparum in Humans
    Wilson, DW ; Fowkes, FJI ; Gilson, PR ; Elliott, SR ; Tavul, L ; Michon, P ; Dabod, E ; Siba, PM ; Mueller, I ; Crabb, BS ; Beeson, JG ; Snounou, G (PUBLIC LIBRARY SCIENCE, 2011-11-15)
    BACKGROUND: Antibodies targeting blood stage antigens are important in protection against malaria, but the key targets and mechanisms of immunity are not well understood. Merozoite surface protein 1 (MSP1) is an abundant and essential protein. The C-terminal 19 kDa region (MSP1-19) is regarded as a promising vaccine candidate and may also be an important target of immunity. METHODOLOGY/FINDINGS: Growth inhibitory antibodies against asexual-stage parasites and IgG to recombinant MSP1-19 were measured in plasma samples from a longitudinal cohort of 206 children in Papua New Guinea. Differential inhibition by samples of mutant P. falciparum lines that expressed either the P. falciparum or P. chabaudi form of MSP1-19 were used to quantify MSP1-19 specific growth-inhibitory antibodies. The great majority of children had detectable IgG to MSP1-19, and high levels of IgG were significantly associated with a reduced risk of symptomatic P. falciparum malaria during the 6-month follow-up period. However, there was little evidence of PfMSP1-19 specific growth inhibition by plasma samples from children. Similar results were found when testing non-dialysed or dialysed plasma, or purified antibodies, or when measuring growth inhibition in flow cytometry or microscopy-based assays. Rabbit antisera generated by immunization with recombinant MSP1-19 demonstrated strong MSP1-19 specific growth-inhibitory activity, which appeared to be due to much higher antibody levels than human samples; antibody avidity was similar between rabbit antisera and human plasma. CONCLUSIONS/SIGNIFICANCE: These data suggest that MSP1-19 is not a major target of growth inhibitory antibodies and that the protective effects of antibodies to MSP1-19 are not due to growth inhibitory activity, but may instead be mediated by other mechanisms. Alternatively, antibodies to MSP1-19 may act as a marker of protective immunity.
  • Item
    Thumbnail Image
    The association between naturally acquired IgG subclass specific antibodies to the PfRH5 invasion complex and protection from Plasmodium falciparum malaria
    Weaver, R ; Reiling, L ; Feng, G ; Drew, DR ; Mueller, I ; Siba, PM ; Tsuboi, T ; Richards, JS ; Fowkes, FJI ; Beeson, JG (NATURE PORTFOLIO, 2016-09-08)
    Understanding the targets and mechanisms of human immunity to malaria is important for advancing the development of highly efficacious vaccines and serological tools for malaria surveillance. The PfRH5 and PfRipr proteins form a complex on the surface of P. falciparum merozoites that is essential for invasion of erythrocytes and are vaccine candidates. We determined IgG subclass responses to these proteins among malaria-exposed individuals in Papua New Guinea and their association with protection from malaria in a longitudinal cohort of children. Cytophilic subclasses, IgG1 and IgG3, were predominant with limited IgG2 and IgG4, and IgG subclass-specific responses were higher in older children and those with active infection. High IgG3 to PfRH5 and PfRipr were significantly and strongly associated with reduced risk of malaria after adjusting for potential confounding factors, whereas associations for IgG1 responses were generally weaker and not statistically significant. Results further indicated that malaria exposure leads to the co-acquisition of IgG1 and IgG3 to PfRH5 and PfRipr, as well as to other PfRH invasion ligands, PfRH2 and PfRH4. These findings suggest that IgG3 responses to PfRH5 and PfRipr may play a significant role in mediating naturally-acquired immunity and support their potential as vaccine candidates and their use as antibody biomarkers of immunity.
  • Item
    Thumbnail Image
    Human antibodies activate complement against Plasmodium falciparum sporozoites, and are associated with protection against malaria in children
    Kurtovic, L ; Behet, MC ; Feng, G ; Reiling, L ; Chelimo, K ; Dent, AE ; Mueller, I ; Kazura, JW ; Sauerwein, RW ; Fowkes, FJI ; Beeson, JG (BMC, 2018-04-30)
    BACKGROUND: Antibodies targeting Plasmodium falciparum sporozoites play a key role in human immunity to malaria. However, antibody mechanisms that neutralize sporozoites are poorly understood. This has been a major constraint in developing highly efficacious vaccines, as we lack strong correlates of protective immunity. METHODS: We quantified the ability of human antibodies from malaria-exposed populations to interact with human complement, examined the functional effects of complement activity against P. falciparum sporozoites in vitro, and identified targets of functional antibodies. In children and adults from malaria-endemic regions, we determined the acquisition of complement-fixing antibodies to sporozoites and their relationship with antibody isotypes and subclasses. We also investigated associations with protective immunity in a longitudinal cohort of children (n = 206) residing in a malaria-endemic region. RESULTS: We found that antibodies to the major sporozoite surface antigen, circumsporozoite protein (CSP), were predominately IgG1, IgG3, and IgM, and could interact with complement through recruitment of C1q and activation of the classical pathway. The central repeat region of CSP, included in leading vaccines, was a key target of complement-fixing antibodies. We show that antibodies activate human complement on P. falciparum sporozoites, which consequently inhibited hepatocyte cell traversal that is essential for establishing liver-stage infection, and led to sporozoite death in vitro. The natural acquisition of complement-fixing antibodies in malaria-exposed populations was age-dependent, and was acquired more slowly to sporozoite antigens than to merozoite antigens. In a longitudinal cohort of children, high levels of complement-fixing antibodies were significantly associated with protection against clinical malaria. CONCLUSIONS: These novel findings point to complement activation by antibodies as an important mechanism of anti-sporozoite human immunity, thereby enabling new strategies for developing highly efficacious malaria vaccines. We also present evidence that complement-fixing antibodies may be a valuable correlate of protective immunity in humans.
  • Item
    Thumbnail Image
    Targets of complement-fixing antibodies in protective immunity against malaria in children
    Reiling, L ; Boyle, MJ ; White, MT ; Wilson, DW ; Feng, G ; Weaver, R ; Opi, DH ; Persson, KEM ; Richards, JS ; Siba, PM ; Fowkes, FJI ; Takashima, E ; Tsuboi, T ; Mueller, I ; Beeson, JG (NATURE PUBLISHING GROUP, 2019-02-05)
    Antibodies against P. falciparum merozoites fix complement to inhibit blood-stage replication in naturally-acquired and vaccine-induced immunity; however, specific targets of these functional antibodies and their importance in protective immunity are unknown. Among malaria-exposed individuals, we show that complement-fixing antibodies to merozoites are more strongly correlated with protective immunity than antibodies that inhibit growth quantified using the current reference assay for merozoite vaccine evaluation. We identify merozoite targets of complement-fixing antibodies and identify antigen-specific complement-fixing antibodies that are strongly associated with protection from malaria in a longitudinal study of children. Using statistical modelling, combining three different antigens targeted by complement-fixing antibodies could increase the potential protective effect to over 95%, and we identify antigens that were common in the most protective combinations. Our findings support antibody-complement interactions against merozoite antigens as important anti-malaria immune mechanisms, and identify specific merozoite antigens for further evaluation as vaccine candidates.
  • Item
    Thumbnail Image
    IgM in human immunity to Plasmodium falciparum malaria
    Boyle, MJ ; Chan, JA ; Handayuni, I ; Reiling, L ; Feng, G ; Hilton, A ; Kurtovic, L ; Oyong, D ; Piera, KA ; Barber, BE ; William, T ; Eisen, DP ; Minigo, G ; Langer, C ; Drew, DR ; Rivera, FDL ; Amante, FH ; Williams, TN ; Kinyanjui, S ; Marsh, K ; Doolan, DL ; Engwerda, C ; Fowkes, FJI ; Grigg, MJ ; Mueller, I ; McCarthy, JS ; Anstey, NM ; Beeson, JG (AMER ASSOC ADVANCEMENT SCIENCE, 2019-09)
    Most studies on human immunity to malaria have focused on the roles of immunoglobulin G (IgG), whereas the roles of IgM remain undefined. Analyzing multiple human cohorts to assess the dynamics of malaria-specific IgM during experimentally induced and naturally acquired malaria, we identified IgM activity against blood-stage parasites. We found that merozoite-specific IgM appears rapidly in Plasmodium falciparum infection and is prominent during malaria in children and adults with lifetime exposure, together with IgG. Unexpectedly, IgM persisted for extended periods of time; we found no difference in decay of merozoite-specific IgM over time compared to that of IgG. IgM blocked merozoite invasion of red blood cells in a complement-dependent manner. IgM was also associated with significantly reduced risk of clinical malaria in a longitudinal cohort of children. These findings suggest that merozoite-specific IgM is an important functional and long-lived antibody response targeting blood-stage malaria parasites that contributes to malaria immunity.
  • Item
    Thumbnail Image
    Iron deficiency during pregnancy is associated with a reduced risk of adverse birth outcomes in a malaria-endemic area in a longitudinal cohort study
    Fowkes, FJI ; Moore, KA ; Opi, DH ; Simpson, JA ; Langham, F ; Stanisic, DI ; Ura, A ; King, CL ; Siba, PM ; Mueller, I ; Rogerson, SJ ; Beeson, JG (BMC, 2018-09-20)
    BACKGROUND: Low birth weight (LBW) and preterm birth (PTB) are major contributors to infant mortality and chronic childhood morbidity. Understanding factors that contribute to or protect against these adverse birth outcomes is an important global health priority. Anaemia and iron deficiency are common in malaria-endemic regions, but there are concerns regarding the value of iron supplementation among pregnant women in malaria-endemic areas due to reports that iron supplementation may increase the risk of malaria. There is a lack of evidence on the impact of iron deficiency on pregnancy outcomes in malaria-endemic regions. METHODS: We determined iron deficiency in a cohort of 279 pregnant women in a malaria-endemic area of Papua New Guinea. Associations with birth weight, LBW and PTB were estimated using linear and logistic regression. A causal model using sequential mediation analyses was constructed to assess the association between iron deficiency and LBW, either independently or mediated through malaria and/or anaemia. RESULTS: Iron deficiency in pregnant women was common (71% at enrolment) and associated with higher mean birth weights (230 g; 95% confidence interval, CI 118, 514; p < 0.001), and reduced odds of LBW (adjusted odds ratio, aOR = 0.32; 95% CI 0.16, 0.64; p = 0.001) and PTB (aOR = 0.57; 95% CI 0.30, 1.09; p = 0.089). Magnitudes of effect were greatest in primigravidae (birth weight 351 g; 95% CI 188, 514; p < 0.001; LBW aOR 0.26; 95% CI 0.10, 0.66; p = 0.005; PTB aOR = 0.39, 95% CI 0.16, 0.97; p = 0.042). Sequential mediation analyses indicated that the protective association of iron deficiency on LBW was mainly mediated through mechanisms independent of malaria or anaemia. CONCLUSIONS: Iron deficiency was associated with substantially reduced odds of LBW predominantly through malaria-independent protective mechanisms, which has substantial implications for understanding risks for poor pregnancy outcomes and evaluating the benefit of iron supplementation in pregnancy. This study is the first longitudinal study to demonstrate a temporal relationship between antenatal iron deficiency and improved birth outcomes. These findings suggest that iron supplementation needs to be integrated with other strategies to prevent or treat infections and undernutrition in pregnancy to achieve substantial improvements in birth outcomes.
  • Item
    Thumbnail Image
    P. falciparum infection and maternofetal antibody transfer in malaria-endemic settings of varying transmission
    McLean, ARD ; Stanisic, D ; McGready, R ; Chotivanich, K ; Clapham, C ; Baiwog, F ; Pimanpanarak, M ; Siba, P ; Mueller, I ; King, CL ; Nosten, F ; Beeson, JG ; Rogerson, S ; Simpson, JA ; Fowkes, FJI ; Braga, ÉM (PUBLIC LIBRARY SCIENCE, 2017-10-13)
    INTRODUCTION: During pregnancy, immunoglobulin G (IgG) is transferred from the mother to the fetus, providing protection from disease in early infancy. Plasmodium falciparum infections may reduce maternofetal antibody transfer efficiency, but mechanisms remain unclear. METHODS: Mother-cord paired serum samples collected at delivery from Papua New Guinea (PNG) and the Thailand-Myanmar Border Area (TMBA) were tested for IgG1 and IgG3 to four P. falciparum antigens and measles antigen, as well as total serum IgG. Multivariable linear regression was conducted to assess the association of peripheral P. falciparum infection during pregnancy or placental P. falciparum infection assessed at delivery with maternofetal antibody transfer efficiency. Path analysis assessed the extent to which associations between P. falciparum infection and antibody transfer were mediated by gestational age at delivery or levels of maternal total serum IgG. RESULTS: Maternofetal antibody transfer efficiency of IgG1 and IgG3 was lower in PNG compared to TMBA (mean difference in cord antibody levels (controlling for maternal antibody levels) ranged from -0.88 to 0.09, median of -0.20 log2 units). Placental P. falciparum infections were associated with substantially lower maternofetal antibody transfer efficiency in PNG primigravid women (mean difference in cord antibody levels (controlling for maternal antibody levels) ranged from -0.62 to -0.10, median of -0.36 log2 units), but not multigravid women. The lower antibody transfer efficiency amongst primigravid women with placental infection was only partially mediated by gestational age at delivery (proportion indirect effect ranged from 0% to 18%), whereas no mediation effects of maternal total serum IgG were observed. DISCUSSION: Primigravid women may be at risk of impaired maternofetal antibody transport with placental P. falciparum infection. Direct effects of P. falciparum on the placenta, rather than earlier gestational age and elevated serum IgG, are likely responsible for the majority of the reduction in maternofetal antibody transfer efficiency with placental infection.