Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    No Preview Available
    In vitro and in vivo assays for osteoclast apoptosis
    Akiyama, T ; Miyazaki, T ; Bouillet, P ; Nakamura, K ; Strasser, A ; Tanaka, S (BIOMED CENTRAL LTD, 2005-05-09)
    Mature osteoclasts, multinucleated giant cells responsible for bone resorption, are terminally differentiated cells with a short life span. Recently, we have demonstrated that osteoclast apoptosis is regulated by ERK activity and Bcl-2 family member Bim. In this paper, we summarize the methods we used to study osteoclast apoptosis in vitro and in vivo. Using adenovirus and retrovirus vectors, we were able to introduce foreign genes into osteoclasts and examine their effects on osteoclast survival in vitro. In addition, we established the modified methods for in situ hybridization and BrdU labeling of bone sections from mice to study osteoclast survival in vivo. The detailed methods described here could be useful for studying the biological process in bone.
  • Item
    No Preview Available
    Individual and overlapping roles of BH3-only proteins Bim and Bad in apoptosis of lymphocytes and platelets and in suppression of thymic lymphoma development
    Kelly, PN ; White, MJ ; Goschnick, MW ; Fairfax, KA ; Tarlinton, DM ; Kinkel, SA ; Bouillet, P ; Adams, JM ; Kile, BT ; Strasser, A (NATURE PUBLISHING GROUP, 2010-10)
    BH3-only proteins, such as Bim and Bad, contribute to tissue homeostasis by initiating apoptosis in a cell type- and stimulus-specific manner. Loss of Bim provokes lymphocyte accumulation in vivo and renders lymphocytes more resistant to diverse apoptotic stimuli and Bad has been implicated in the apoptosis of haematopoietic cells upon cytokine deprivation. To investigate whether their biological roles in apoptosis overlap, we generated mice lacking both Bim and Bad and compared their haematopoietic phenotype with that of the single-knockout and wild-type (wt) animals. Unexpectedly, bad(-/-) mice had excess platelets due to prolonged platelet life-span. The bim(-/-)bad(-/-) mice were anatomically normal and fertile. Their haematopoietic phenotype resembled that of bim(-/-) mice but lymphocytes were slightly more elevated in their lymph nodes. Although resting B and T lymphocytes from bim(-/-)bad(-/-) and bim(-/-) animals displayed similar resistance to diverse apoptotic stimuli, mitogen activated bim(-/-)bad(-/-) B cells were more refractory to cytokine deprivation. Moreover, combined loss of Bim and Bad-enhanced survival of thymocytes after DNA damage and accelerated development of γ-irradiation-induced thymic lymphoma. Unexpectedly, their cooperation in the thymus depended upon thymocyte-stromal interaction. Collectively, these results show that Bim and Bad can cooperate in the apoptosis of thymocytes and activated B lymphocytes and in the suppression of thymic lymphoma development.
  • Item
    No Preview Available
    Membrane-bound Fas ligand only is essential for Fas-induced apoptosis
    Reilly, LAO ; Tai, L ; Lee, L ; Kruse, EA ; Grabow, S ; Fairlie, WD ; Haynes, NM ; Tarlinton, DM ; Zhang, J-G ; Belz, GT ; Smyth, MJ ; Bouillet, P ; Robb, L ; Strasser, A (NATURE PUBLISHING GROUP, 2009-10-01)
    Fas ligand (FasL), an apoptosis-inducing member of the TNF cytokine family, and its receptor Fas are critical for the shutdown of chronic immune responses and prevention of autoimmunity. Accordingly, mutations in their genes cause severe lymphadenopathy and autoimmune disease in mice and humans. FasL function is regulated by deposition in the plasma membrane and metalloprotease-mediated shedding. Here we generated gene-targeted mice that selectively lack either secreted FasL (sFasL) or membrane-bound FasL (mFasL) to resolve which of these forms is required for cell killing and to explore their hypothesized non-apoptotic activities. Mice lacking sFasL (FasL(Deltas/Deltas)) appeared normal and their T cells readily killed target cells, whereas T cells lacking mFasL (FasL(Deltam/Deltam)) could not kill cells through Fas activation. FasL(Deltam/Deltam) mice developed lymphadenopathy and hyper-gammaglobulinaemia, similar to FasL(gld/gld) mice, which express a mutant form of FasL that cannot bind Fas, but surprisingly, FasL(Deltam/Deltam) mice (on a C57BL/6 background) succumbed to systemic lupus erythematosus (SLE)-like autoimmune kidney destruction and histiocytic sarcoma, diseases that occur only rarely and much later in FasL(gld/gld) mice. These results demonstrate that mFasL is essential for cytotoxic activity and constitutes the guardian against lymphadenopathy, autoimmunity and cancer, whereas excess sFasL appears to promote autoimmunity and tumorigenesis through non-apoptotic activities.
  • Item
    Thumbnail Image
    Loss of Bim increases T cell production and function in interleukin 7 receptor-deficient mice
    Pellegrini, M ; Bouillet, P ; Robati, M ; Belz, GT ; Davey, GM ; Strasser, A (ROCKEFELLER UNIV PRESS, 2004-11-01)
    Interleukin (IL)-7 receptor (R) signaling is essential for T and B lymphopoiesis by promoting proliferation, differentiation, and survival of cells. Mice lacking either IL-7 or the IL-7Ralpha chain have abnormally low numbers of immature as well as mature T and B lymphocytes. Transgenic expression of the apoptosis inhibitor Bcl-2 rescues T cell development and function in IL-7Ralpha-deficient mice, indicating that activation of a proapoptotic Bcl-2 family member causes death of immature and mature T cells. BH3-only proteins such as Bim, which are distant proapoptotic members of the Bcl-2 family, are essential initiators of programmed cell death and stress-induced apoptosis. We generated Bim/IL-7Ralpha double deficient mice and found that loss of Bim significantly increased thymocyte numbers, restored near normal numbers of mature T cells in the blood and spleen, and enhanced cytotoxic T cell responses to virus infection in IL-7Ralpha-/- mice. These results indicate that Bim cooperates with other proapoptotic proteins in the death of IL-7-deprived T cell progenitors in vivo, but is the major inducer of this pathway to apoptosis in mature T cells. This indicates that pharmacological inhibition of Bim function might be useful for boosting immune responses in immunodeficient patients.
  • Item
    Thumbnail Image
    Combined loss of proapoptotic genes Bak or Bax with Bim synergizes to cause defects in hematopoiesis and in thymocyte apoptosis
    Hutcheson, J ; Scatizzi, JC ; Bickel, E ; Brown, NJ ; Bouillet, P ; Strasser, A ; Perlman, H (ROCKEFELLER UNIV PRESS, 2005-06-20)
    The proapoptotic members of the Bcl-2 family can be subdivided into members that contain several Bcl-2 homology (BH) domains and those that contain only the BH3 domain. Although it is known that BH3-only proteins and the multi-BH domain proteins, Bak and Bax, are essential for programmed cell death, the overlapping role of these two subgroups has not been examined in vivo. To investigate this, we generated Bak/Bim and Bax/Bim double deficient mice. We found that although Bax-/-Bim-/-, but not Bak-/-Bim-/-, mice display webbed hind and front paws and malocclusion of the incisors, both groups of mice present with dysregulated hematopoiesis. Combined loss of Bak and Bim or Bax and Bim causes defects in myeloid and B-lymphoid development that are more severe than those found in the single knock-out mice. Bak-/-Bim-/- mice have a complement of thymocytes that resembles those in control mice, whereas Bax-/-Bim-/- mice are more similar to Bim-/- mice. However, thymocytes isolated from Bak-/-Bim-/- or Bax-/-Bim-/- mice are markedly more resistant to apoptotic stimuli mediated by the intrinsic pathway as compared with thymocytes from single-knockout mice. These data suggest an essential overlapping role for Bak or Bax and Bim in the intrinsic apoptotic pathway.
  • Item
    Thumbnail Image
    Consequences of the combined loss of BOK and BAK or BOK and BAX
    Ke, F ; Bouillet, P ; Kaufmann, T ; Strasser, A ; Kerr, J ; Voss, AK (NATURE PUBLISHING GROUP, 2013-06)
    The multi-BCL-2 homology domain pro-apoptotic BCL-2 family members BAK and BAX have critical roles in apoptosis. They are essential for mitochondrial outer-membrane permeabilization, leading to the release of apoptogenic factors such as cytochrome-c, which promote activation of the caspase cascade and cellular demolition. The BOK protein has extensive amino-acid sequence similarity to BAK and BAX and is expressed in diverse cell types, particularly those of the female reproductive tissues. The BOK-deficient mice have no readily discernible abnormalities, and its function therefore remains unresolved. We hypothesized that BOK may exert functions that overlap with those of BAK and/or BAX and examined this by generating Bok(-/-)Bak(-/-) and Bok(-/-)Bax(-/-) mice. Combined loss of BOK and BAK did not elicit any noticeable defects, although it remains possible that BOK and BAK have critical roles in developmental cell death that overlap with those of BAX. In most tissues examined, loss of BOK did not exacerbate the abnormalities caused by loss of BAX, such as defects in spermatogenesis or the increase in neuronal populations in the brain and retina. Notably, however, old Bok(-/-)Bax(-/-) females had abnormally increased numbers of oocytes from different stages of development, indicating that BOK may have a pro-apoptotic function overlapping with that of BAX in age-related follicular atresia.
  • Item
    Thumbnail Image
    Loss of the pro-apoptotic BH3-only Bcl-2 family member Bim inhibits BCR stimulation-induced apoptosis and deletion of autoreactive B cells
    Enders, A ; Bouillet, P ; Puthalakath, H ; Xu, YK ; Tarlinton, DM ; Strasser, A (ROCKEFELLER UNIV PRESS, 2003-10-06)
    During development, the stochastic process assembling the genes encoding antigen receptors invariably generates B and T lymphocytes that can recognize self-antigens. Several mechanisms have evolved to prevent the activation of these cells and the concomitant development of autoimmune disease. One such mechanism is the induction of apoptosis in developing or mature B cells by engagement of the B cell antigen receptor (BCR) in the absence of T cell help. Here we report that B lymphocytes lacking the pro-apoptotic Bcl-2 family member Bim are refractory to apoptosis induced by BCR ligation in vitro. The loss of Bim also inhibited deletion of autoreactive B cells in vivo in two transgenic systems of B cell tolerance. Bim loss prevented deletion of autoreactive B cells induced by soluble self-antigen and promoted accumulation of self-reactive B cells developing in the presence of membrane-bound self-antigen, although their numbers were considerably lower compared with antigen-free mice. Mechanistically, we determined that BCR ligation promoted interaction of Bim with Bcl-2, inhibiting its survival function. These findings demonstrate that Bim is a critical player in BCR-mediated apoptosis and in B lymphocyte deletion.
  • Item
    Thumbnail Image
    Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells
    Naik, E ; O'Reilly, LA ; Asselin-Labat, M-L ; Merino, D ; Lin, A ; Cook, M ; Coultas, L ; Bouillet, P ; Adams, JM ; Strasser, A (ROCKEFELLER UNIV PRESS, 2011-07-04)
    For malignant growth, solid cancers must stimulate the formation of new blood vessels by producing vascular endothelial growth factor (VEGF-A), which is required for the survival of tumor-associated vessels. Novel anticancer agents that block VEGF-A signaling trigger endothelial cell (EC) apoptosis and vascular regression preferentially within tumors, but how the ECs die is not understood. In this study, we demonstrate that VEGF-A deprivation, provoked either by drug-induced tumor shrinkage or direct VEGF-A blockade, up-regulates the proapoptotic BH3 (Bcl-2 homology 3)-only Bcl-2 family member Bim in ECs. Importantly, the tumor growth inhibitory activity of a VEGF-A antagonist required Bim-induced apoptosis of ECs. These findings thus reveal the mechanism by which VEGF-A blockade induces EC apoptosis and impairs tumor growth. They also indicate that drugs mimicking BH3-only proteins may be exploited to kill tumor cells not only directly but also indirectly by ablating the tumor vasculature.
  • Item
    Thumbnail Image
    Type I Interferon Drives Dendritic Cell Apoptosis via Multiple BH3-Only Proteins following Activation by PolyIC In Vivo
    Marraco, SAF ; Scott, CL ; Bouillet, P ; Ives, A ; Masina, S ; Vremec, D ; Jansen, ES ; O'Reilly, LA ; Schneider, P ; Fasel, N ; Shortman, K ; Strasser, A ; Acha-Orbea, H ; Rotzschke, O (PUBLIC LIBRARY SCIENCE, 2011-06-02)
    BACKGROUND: DC are activated by pathogen-associated molecular patterns (PAMPs), and this is pivotal for the induction of adaptive immune responses. Thereafter, the clearance of activated DC is crucial to prevent immune pathology. While PAMPs are of major interest for vaccine science due to their adjuvant potential, it is unclear whether and how PAMPs may affect DC viability. We aimed to elucidate the possible apoptotic mechanisms that control activated DC lifespan in response to PAMPs, particularly in vivo. METHODOLOGY/PRINCIPAL FINDINGS: We report that polyinosinic:polycytidylic acid (PolyIC, synthetic analogue of dsRNA) induces dramatic apoptosis of mouse splenic conventional DC (cDC) in vivo, predominantly affecting the CD8α subset, as shown by flow cytometry-based analysis of splenic DC subsets. Importantly, while Bim deficiency conferred only minor protection, cDC depletion was prevented in mice lacking Bim plus one of three other BH3-only proteins, either Puma, Noxa or Bid. Furthermore, we show that Type I Interferon (IFN) is necessary and sufficient for DC death both in vitro and in vivo, and that TLR3 and MAVS co-operate in IFNß production in vivo to induce DC death in response to PolyIC. CONCLUSIONS/SIGNIFICANCE: These results demonstrate for the first time in vivo that apoptosis restricts DC lifespan following activation by PolyIC, particularly affecting the CD8α cDC subset. Such DC apoptosis is mediated by the overlapping action of pro-apoptotic BH3-only proteins, including but not solely involving Bim, and is driven by Type I IFN. While Type I IFNs are important anti-viral factors, CD8α cDC are major cross-presenting cells and critical inducers of CTL. We discuss such paradoxical finding on DC death with PolyIC/Type I IFN. These results could contribute to understand immunosuppression associated with chronic infection, and to the optimization of DC-based therapies and the clinical use of PAMPs and Type I IFNs.
  • Item
    Thumbnail Image
    Glucose Induces Pancreatic Islet Cell Apoptosis That Requires the BH3-Only Proteins Bim and Puma and Multi-BH Domain Protein Bax
    McKenzie, MD ; Jamieson, E ; Jansen, ES ; Scott, CL ; Huang, DCS ; Bouillet, P ; Allison, J ; Kay, TWH ; Strasser, A ; Thomas, HE (AMER DIABETES ASSOC, 2010-03)
    OBJECTIVE: High concentrations of circulating glucose are believed to contribute to defective insulin secretion and beta-cell function in diabetes and at least some of this effect appears to be caused by glucose-induced beta-cell apoptosis. In mammalian cells, apoptotic cell death is controlled by the interplay of proapoptotic and antiapoptotic members of the Bcl-2 family. We investigated the apoptotic pathway induced in mouse pancreatic islet cells after exposure to high concentrations of the reducing sugars ribose and glucose as a model of beta-cell death due to long-term metabolic stress. RESEARCH DESIGN AND METHODS: Islets isolated from mice lacking molecules implicated in cell death pathways were exposed to high concentrations of glucose or ribose. Apoptosis was measured by analysis of DNA fragmentation and release of mitochondrial cytochrome c. RESULTS: Deficiency of interleukin-1 receptors or Fas did not diminish apoptosis, making involvement of inflammatory cytokine receptor or death receptor signaling in glucose-induced apoptosis unlikely. In contrast, overexpression of the prosurvival protein Bcl-2 or deficiency of the apoptosis initiating BH3-only proteins Bim or Puma, or the downstream apoptosis effector Bax, markedly reduced glucose- or ribose-induced killing of islets. Loss of other BH3-only proteins Bid or Noxa, or the Bax-related effector Bak, had no impact on glucose-induced apoptosis. CONCLUSIONS: These results implicate the Bcl-2 regulated apoptotic pathway in glucose-induced islet cell killing and indicate points in the pathway at which interventional strategies can be designed.