Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    A newly discovered protein export machine in malaria parasites
    de Koning-Ward, TF ; Gilson, PR ; Boddey, JA ; Rug, M ; Smith, BJ ; Papenfuss, AT ; Sanders, PR ; Lundie, RJ ; Maier, AG ; Cowman, AF ; Crabb, BS (NATURE PORTFOLIO, 2009-06-18)
    Several hundred malaria parasite proteins are exported beyond an encasing vacuole and into the cytosol of the host erythrocyte, a process that is central to the virulence and viability of the causative Plasmodium species. The trafficking machinery responsible for this export is unknown. Here we identify in Plasmodium falciparum a translocon of exported proteins (PTEX), which is located in the vacuole membrane. The PTEX complex is ATP-powered, and comprises heat shock protein 101 (HSP101; a ClpA/B-like ATPase from the AAA+ superfamily, of a type commonly associated with protein translocons), a novel protein termed PTEX150 and a known parasite protein, exported protein 2 (EXP2). EXP2 is the potential channel, as it is the membrane-associated component of the core PTEX complex. Two other proteins, a new protein PTEX88 and thioredoxin 2 (TRX2), were also identified as PTEX components. As a common portal for numerous crucial processes, this translocon offers a new avenue for therapeutic intervention.
  • Item
    Thumbnail Image
    Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites
    Baum, J ; Papenfuss, AT ; Mair, GR ; Janse, CJ ; Vlachou, D ; Waters, AP ; Cowman, AF ; Crabb, BS ; de Koning-Ward, TF (OXFORD UNIV PRESS, 2009-06)
    Techniques for targeted genetic disruption in Plasmodium, the causative agent of malaria, are currently intractable for those genes that are essential for blood stage development. The ability to use RNA interference (RNAi) to silence gene expression would provide a powerful means to gain valuable insight into the pathogenic blood stages but its functionality in Plasmodium remains controversial. Here we have used various RNA-based gene silencing approaches to test the utility of RNAi in malaria parasites and have undertaken an extensive comparative genomics search using profile hidden Markov models to clarify whether RNAi machinery exists in malaria. These investigative approaches revealed that Plasmodium lacks the enzymology required for RNAi-based ablation of gene expression and indeed no experimental evidence for RNAi was observed. In its absence, the most likely explanations for previously reported RNAi-mediated knockdown are either the general toxicity of introduced RNA (with global down-regulation of gene expression) or a specific antisense effect mechanistically distinct from RNAi, which will need systematic analysis if it is to be of use as a molecular genetic tool for malaria parasites.
  • Item
    Thumbnail Image
    A 4-cyano-3-methylisoquinoline inhibitor of Plasmodium falciparum growth targets the sodium efflux pump PfATP4
    Gilson, PR ; Kumarasingha, R ; Thompson, J ; Zhang, X ; Sietsma Penington, J ; Kalhor, R ; Bullen, HE ; Lehane, AM ; Dans, MG ; de Koning-Ward, TF ; Holien, JK ; Soares da Costa, TP ; Hulett, MD ; Buskes, MJ ; Crabb, BS ; Kirk, K ; Papenfuss, AT ; Cowman, AF ; Abbott, BM (NATURE PORTFOLIO, 2019-07-16)
    We developed a novel series of antimalarial compounds based on a 4-cyano-3-methylisoquinoline. Our lead compound MB14 achieved modest inhibition of the growth in vitro of the human malaria parasite, Plasmodium falciparum. To identify its biological target we selected for parasites resistant to MB14. Genome sequencing revealed that all resistant parasites bore a single point S374R mutation in the sodium (Na+) efflux transporter PfATP4. There are many compounds known to inhibit PfATP4 and some are under preclinical development. MB14 was shown to inhibit Na+ dependent ATPase activity in parasite membranes, consistent with the compound targeting PfATP4 directly. PfATP4 inhibitors cause swelling and lysis of infected erythrocytes, attributed to the accumulation of Na+ inside the intracellular parasites and the resultant parasite swelling. We show here that inhibitor-induced lysis of infected erythrocytes is dependent upon the parasite protein RhopH2, a component of the new permeability pathways that are induced by the parasite in the erythrocyte membrane. These pathways mediate the influx of Na+ into the infected erythrocyte and their suppression via RhopH2 knockdown limits the accumulation of Na+ within the parasite hence protecting the infected erythrocyte from lysis. This study reveals a role for the parasite-induced new permeability pathways in the mechanism of action of PfATP4 inhibitors.