Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    No Preview Available
    Assessment of susceptibility of Plasmodium falciparum to chloroquine, quinine, mefloquine, sulfadoxine-pyrimethamine and artemisinin in southern Viet Nam
    Thanh, NV ; Cowman, AF ; Hipgrave, D ; Kim, TB ; Phuc, BQ ; Cong, LD ; Biggs, BA (ROYAL SOC TROPICAL MEDICINE, 2001)
    Resistance to antimalarial chemotherapy is a major concern for malaria control in Viet Nam. In this study undertaken in 1998, 65 patients with uncomplicated Plasmodium falciparum malaria were monitored for 28 days after completion of a 5-day treatment course with artemisinin. Overall 36.9% (24/65) of patients had recurrent parasitaemia during the surveillance period. P. falciparum isolates were tested for sensitivity in vitro to chloroquine, mefloquine, quinine, sulfadoxine-pyrimethamine and results were compared to those from a similar study in 1995. Increased parasite sensitivity to sulfadoxine-pyrimethamine, chloroquine and quinine was demonstrated, with significantly lower mean EC50 and EC99 values in 1998 compared to 1995. Parasite sensitivity to mefloquine did not differ significantly in the 2 surveys. Isolates were also tested for sensitivity in vitro to artemisinin in the 1998 survey. The mean EC50 was 0.03 mumol/L and the EC99 was 0.94 mumol/L. Parasite sensitivity to artemisinin will need to be monitored in view of its increasing use in Viet Nam.
  • Item
    Thumbnail Image
    Prevalence of polymorphisms in DHFR, DHPS, PFMDR1 and PFCRT genes of Plasmodium falciparum isolates in Quang Tri Province, Vietnam
    Phuc, BQ ; Caruana, SR ; Cowman, AF ; Biggs, B-A ; Thanh, NV ; Tien, NT ; Thuan, LK (SEAMEO TROPMED Network, 2008-11)
    In 2002 an antimalarial drug resistance survey was carried out in a seasonally endemic area of Vietnam. Sulfadoxine/pyrimethamine (S/P) was the standard treatment recommended for uncomplicated Plasmodium falciparum malaria in that area at the time. Early or late treatment failure as defined by WHO was observed in 14.9% (7/47) of patients. Molecular analysis of treatment failure isolates identified that 5/6 carried two or more dhfr and dhps polymorphisms associated with S/P resistance. Chloroquine resistance-associated polymorphisms occurred in 38.5% (15/39) of the isolates. These results support the move to artemisinin-based combination therapy for malaria in Vietnam.
  • Item
    Thumbnail Image
    Alterations in local chromatin environment are involved in silencing and activation of subtelomeric var genes in Plasmodium falciparum
    Voss, TS ; Tonkin, CJ ; Marty, AJ ; Thompson, JK ; Healer, J ; Crabb, BS ; Cowman, AF (WILEY-BLACKWELL, 2007-10)
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the var gene family, undergoes antigenic variation and plays an important role in chronic infection and severe malaria. Only a single var gene is transcribed per parasite, and epigenetic control mechanisms are fundamental in this strategy of mutually exclusive transcription. We show that subtelomeric upsB var gene promoters carried on episomes are silenced by default, and that promoter activation is sufficient to silence all other family members. However, they are active by default when placed downstream of a second active var promoter, underscoring the significance of local chromatin environment and nuclear compartmentalization in var promoter regulation. Native chromatin covering the SPE2-repeat array in upsB promoters is resistant to nuclease digestion, and insertion of these regulatory elements into a heterologous promoter causes local alterations in nucleosomal organization and promoter repression. Our findings suggest a common logic underlying the transcriptional control of all var genes, and have important implications for our understanding of the epigenetic processes involved in the regulation of this major virulence gene family.
  • Item
    No Preview Available
    Plasmodium falciparum virulence determinants unveiled
    Crabb, BS ; Cowman, AF (BIOMED CENTRAL LTD, 2002)
    The human malaria parasite Plasmodium falciparum, one of the world's most devastating pathogens, has an astonishing array of sequences and genes that play key roles in pathogenesis and immune evasion. We must understand the functions of these elements if the chronicity and unpredictable virulence of Plasmodium is to be explained.
  • Item
    Thumbnail Image
    Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites
    Sargeant, TJ ; Marti, M ; Caler, E ; Carlton, JM ; Simpson, K ; Speed, TP ; Cowman, AF (BMC, 2006)
    BACKGROUND: The apicomplexan parasite Plasmodium falciparum causes the most severe form of malaria in humans. After invasion into erythrocytes, asexual parasite stages drastically alter their host cell and export remodeling and virulence proteins. Previously, we have reported identification and functional analysis of a short motif necessary for export of proteins out of the parasite and into the red blood cell. RESULTS: We have developed software for the prediction of exported proteins in the genus Plasmodium, and identified exported proteins conserved between malaria parasites infecting rodents and the two major causes of human malaria, P. falciparum and P. vivax. This conserved 'exportome' is confined to a few subtelomeric chromosomal regions in P. falciparum and the synteny of these and surrounding regions is conserved in P. vivax. We have identified a novel gene family PHIST (for Plasmodium helical interspersed subtelomeric family) that shares a unique domain with 72 paralogs in P. falciparum and 39 in P. vivax; however, there is only one member in each of the three species studied from the P. berghei lineage. CONCLUSION: These data suggest radiation of genes encoding remodeling and virulence factors from a small number of loci in a common Plasmodium ancestor, and imply a closer phylogenetic relationship between the P. vivax and P. falciparum lineages than previously believed. The presence of a conserved 'exportome' in the genus Plasmodium has important implications for our understanding of both common mechanisms and species-specific differences in host-parasite interactions, and may be crucial in developing novel antimalarial drugs to this infectious disease.
  • Item
    Thumbnail Image
    Invasion by P-falciparum merozoites suggests a hierarchy of molecular interactions
    Baum, J ; Maier, AG ; Good, RT ; Simpson, KM ; Cowman, AF ; Young, J (PUBLIC LIBRARY SCIENCE, 2005-12)
    Central to the pathology of malaria disease are the repeated cycles of parasite invasion and destruction of human erythrocytes. In Plasmodium falciparum, the most virulent species causing malaria, erythrocyte invasion involves several specific receptor-ligand interactions that direct the pathway used to invade the host cell, with parasites varying in their dependency on these different pathways. Gene disruption of a key invasion ligand in the 3D7 parasite strain, the P. falciparum reticulocyte binding-like homolog 2b (PfRh2b), resulted in the parasite invading via a novel pathway. Here, we show results that suggest the molecular basis for this novel pathway is not due to a molecular switch but is instead mediated by the redeployment of machinery already present in the parent parasite but masked by the dominant role of PfRh2b. This would suggest that interactions directing invasion are organized hierarchically, where silencing of dominant invasion ligands reveal underlying alternative pathways. This provides wild parasites with the ability to adapt to immune-mediated selection or polymorphism in erythrocyte receptors and has implications for the use of invasion-related molecules in candidate vaccines.
  • Item
    Thumbnail Image
    The cytoplasmic domain of the Plasmodium falciparum ligand EBA-175 is essential for invasion but not protein trafficking
    Gilberger, TW ; Thompson, JK ; Reed, MB ; Good, RT ; Cowman, AF (ROCKEFELLER UNIV PRESS, 2003-07-21)
    The invasion of host cells by the malaria parasite Plasmodium falciparum requires specific protein-protein interactions between parasite and host receptors and an intracellular translocation machinery to power the process. The transmembrane erythrocyte binding protein-175 (EBA-175) and thrombospondin-related anonymous protein (TRAP) play central roles in this process. EBA-175 binds to glycophorin A on human erythrocytes during the invasion process, linking the parasite to the surface of the host cell. In this report, we show that the cytoplasmic domain of EBA-175 encodes crucial information for its role in merozoite invasion, and that trafficking of this protein is independent of this domain. Further, we show that the cytoplasmic domain of TRAP, a protein that is not expressed in merozoites but is essential for invasion of liver cells by the sporozoite stage, can substitute for the cytoplasmic domain of EBA-175. These results show that the parasite uses the same components of its cellular machinery for invasion regardless of the host cell type and invasive form.
  • Item
    Thumbnail Image
    Antibodies against merozoite surface protein (MSP)-119 are a major component of the invasion-inhibitory response in individuals immune to malaria
    O'Donnell, RA ; de Koning-Ward, TF ; Burt, RA ; Bockarie, M ; Reeder, JC ; Cowman, AF ; Crabb, BS (ROCKEFELLER UNIV PRESS, 2001-06-18)
    Antibodies that bind to antigens expressed on the merozoite form of the malaria parasite can inhibit parasite growth by preventing merozoite invasion of red blood cells. Inhibitory antibodies are found in the sera of malaria-immune individuals, however, the specificity of those that are important to this process is not known. In this paper, we have used allelic replacement to construct a Plasmodium falciparum parasite line that expresses the complete COOH-terminal fragment of merozoite surface protein (MSP)-1(19) from the divergent rodent malaria P. chabaudi. By comparing this transfected line with parental parasites that differ only in MSP-1(19), we show that antibodies specific for this domain are a major component of the inhibitory response in P. falciparum-immune humans and P. chabaudi-immune mice. In some individual human sera, MSP-1(19) antibodies dominated the inhibitory activity. The finding that antibodies to a small region of a single protein play a major role in this process has important implications for malaria immunity and is strongly supportive of further understanding and development of MSP-1(19)-based vaccines.
  • Item
    Thumbnail Image
    Signal-mediated export of proteins from the malaria parasite to the host erythrocyte
    Marti, M ; Baum, J ; Rug, M ; Tilley, L ; Cowman, AF (ROCKEFELLER UNIV PRESS, 2005-11-21)
    Intracellular parasites from the genus Plasmodium reside and multiply in a variety of cells during their development. After invasion of human erythrocytes, asexual stages from the most virulent malaria parasite, P. falciparum, drastically change their host cell and export remodelling and virulence proteins. Recent data demonstrate that a specific NH(2)-terminal signal conserved across the genus Plasmodium plays a central role in this export process.