Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    No Preview Available
    Caspase-8-driven apoptotic and pyroptotic crosstalk causes cell death and IL-1β release in X-linked inhibitor of apoptosis (XIAP) deficiency
    Hughes, SA ; Lin, M ; Weir, A ; Huang, B ; Xiong, L ; Chua, NK ; Pang, J ; Santavanond, JP ; Tixeira, R ; Doerflinger, M ; Deng, Y ; Yu, C-H ; Silke, N ; Conos, SA ; Frank, D ; Simpson, DS ; Murphy, JM ; Lawlor, KE ; Pearson, JS ; Silke, J ; Pellegrini, M ; Herold, M ; Poon, IKH ; Masters, SL ; Li, M ; Tang, Q ; Zhang, Y ; Rashidi, M ; Geng, L ; Vince, JE (WILEY, 2023-03-01)
    Genetic lesions in X-linked inhibitor of apoptosis (XIAP) pre-dispose humans to cell death-associated inflammatory diseases, although the underlying mechanisms remain unclear. Here, we report that two patients with XIAP deficiency-associated inflammatory bowel disease display increased inflammatory IL-1β maturation as well as cell death-associated caspase-8 and Gasdermin D (GSDMD) processing in diseased tissue, which is reduced upon patient treatment. Loss of XIAP leads to caspase-8-driven cell death and bioactive IL-1β release that is only abrogated by combined deletion of the apoptotic and pyroptotic cell death machinery. Namely, extrinsic apoptotic caspase-8 promotes pyroptotic GSDMD processing that kills macrophages lacking both inflammasome and apoptosis signalling components (caspase-1, -3, -7, -11 and BID), while caspase-8 can still cause cell death in the absence of both GSDMD and GSDME when caspase-3 and caspase-7 are present. Neither caspase-3 and caspase-7-mediated activation of the pannexin-1 channel, or GSDMD loss, prevented NLRP3 inflammasome assembly and consequent caspase-1 and IL-1β maturation downstream of XIAP inhibition and caspase-8 activation, even though the pannexin-1 channel was required for NLRP3 triggering upon mitochondrial apoptosis. These findings uncouple the mechanisms of cell death and NLRP3 activation resulting from extrinsic and intrinsic apoptosis signalling, reveal how XIAP loss can co-opt dual cell death programs, and uncover strategies for targeting the cell death and inflammatory pathways that result from XIAP deficiency.
  • Item
    No Preview Available
    A human model of Buruli ulcer: The case for controlled human infection and considerations for selecting a Mycobacterium ulcerans challenge strain
    Muhi, S ; Osowicki, J ; O'Brien, D ; Johnson, PDR ; Pidot, S ; Doerflinger, M ; Marshall, JLL ; Pellegrini, M ; McCarthy, J ; Stinear, TPP ; Converse, PJ (PUBLIC LIBRARY SCIENCE, 2023-06)
    Critical knowledge gaps regarding infection with Mycobacterium ulcerans, the cause of Buruli ulcer (BU), have impeded development of new therapeutic approaches and vaccines for prevention of this neglected tropical disease. Here, we review the current understanding of host-pathogen interactions and correlates of immune protection to explore the case for establishing a controlled human infection model of M. ulcerans infection. We also summarise the overarching safety considerations and present a rationale for selecting a suitable challenge strain.
  • Item
    No Preview Available
    Epigenetic Silencing of RIPK3 in Hepatocytes Prevents MLKL -mediated Necroptosis From Contributing to Liver Pathologies
    Preston, SP ; Stutz, MD ; Allison, CC ; Nachbur, U ; Gouil, Q ; Bang, MT ; Duvivier, V ; Arandjelovic, P ; Cooney, JP ; Mackiewicz, L ; Meng, Y ; Schaefer, J ; Bader, SM ; Peng, H ; Valaydon, Z ; Rajasekaran, P ; Jennison, C ; Lopaticki, S ; Farrell, A ; Ryan, M ; Howell, J ; Croagh, C ; Karunakaran, D ; Schuster-Klein, C ; Murphy, JM ; Fifis, T ; Christophi, C ; Vincan, E ; Blewitt, ME ; Thompson, A ; Boddey, JA ; Doerflinger, M ; Pellegrini, M (W B SAUNDERS CO-ELSEVIER INC, 2022-12)
    BACKGROUND & AIMS: Necroptosis is a highly inflammatory mode of cell death that has been implicated in causing hepatic injury including steatohepatitis/ nonalcoholic steatohepatitis (NASH); however, the evidence supporting these claims has been controversial. A comprehensive, fundamental understanding of cell death pathways involved in liver disease critically underpins rational strategies for therapeutic intervention. We sought to define the role and relevance of necroptosis in liver pathology. METHODS: Several animal models of human liver pathology, including diet-induced steatohepatitis in male mice and diverse infections in both male and female mice, were used to dissect the relevance of necroptosis in liver pathobiology. We applied necroptotic stimuli to primary mouse and human hepatocytes to measure their susceptibility to necroptosis. Paired liver biospecimens from patients with NASH, before and after intervention, were analyzed. DNA methylation sequencing was also performed to investigate the epigenetic regulation of RIPK3 expression in primary human and mouse hepatocytes. RESULTS: Identical infection kinetics and pathologic outcomes were observed in mice deficient in an essential necroptotic effector protein, MLKL, compared with control animals. Mice lacking MLKL were indistinguishable from wild-type mice when fed a high-fat diet to induce NASH. Under all conditions tested, we were unable to induce necroptosis in hepatocytes. We confirmed that a critical activator of necroptosis, RIPK3, was epigenetically silenced in mouse and human primary hepatocytes and rendered them unable to undergo necroptosis. CONCLUSIONS: We have provided compelling evidence that necroptosis is disabled in hepatocytes during homeostasis and in the pathologic conditions tested in this study.
  • Item
    Thumbnail Image
    Tankyrase-mediated ADP-ribosylation is a regulator of TNF-induced death
    Liu, L ; Sandow, JJ ; Pedrioli, DML ; Samson, AL ; Silke, N ; Kratina, T ; Ambrose, RL ; Doerflinger, M ; Hu, Z ; Morrish, E ; Chau, D ; Kueh, AJ ; Fitzibbon, C ; Pellegrini, M ; Pearson, JS ; Hottiger, MO ; Webb, A ; Lalaoui, N ; Silke, J (AMER ASSOC ADVANCEMENT SCIENCE, 2022-05)
    Tumor necrosis factor (TNF) is a key component of the innate immune response. Upon binding to its receptor, TNFR1, it promotes production of other cytokines via a membrane-bound complex 1 or induces cell death via a cytosolic complex 2. To understand how TNF-induced cell death is regulated, we performed mass spectrometry of complex 2 and identified tankyrase-1 as a native component that, upon a death stimulus, mediates complex 2 poly-ADP-ribosylation (PARylation). PARylation promotes recruitment of the E3 ligase RNF146, resulting in proteasomal degradation of complex 2, thereby limiting cell death. Expression of the ADP-ribose-binding/hydrolyzing severe acute respiratory syndrome coronavirus 2 macrodomain sensitizes cells to TNF-induced death via abolishing complex 2 PARylation. This suggests that disruption of ADP-ribosylation during an infection can prime a cell to retaliate with an inflammatory cell death.
  • Item
    Thumbnail Image
    Insights Into Drug Repurposing, as Well as Specificity and Compound Properties of Piperidine-Based SARS-CoV-2 PLpro Inhibitors
    Calleja, DJ ; Kuchel, N ; Lu, BGC ; Birkinshaw, RW ; Klemm, T ; Doerflinger, M ; Cooney, JP ; Mackiewicz, L ; Au, AE ; Yap, YQ ; Blackmore, TR ; Katneni, K ; Crighton, E ; Newman, J ; Jarman, KE ; Call, MJ ; Lechtenberg, BC ; Czabotar, PE ; Pellegrini, M ; Charman, SA ; Lowes, KN ; Mitchell, JP ; Nachbur, U ; Lessene, G ; Komander, D (FRONTIERS MEDIA SA, 2022-04-12)
    The COVID-19 pandemic continues unabated, emphasizing the need for additional antiviral treatment options to prevent hospitalization and death of patients infected with SARS-CoV-2. The papain-like protease (PLpro) domain is part of the SARS-CoV-2 non-structural protein (nsp)-3, and represents an essential protease and validated drug target for preventing viral replication. PLpro moonlights as a deubiquitinating (DUB) and deISGylating enzyme, enabling adaptation of a DUB high throughput (HTS) screen to identify PLpro inhibitors. Drug repurposing has been a major focus through the COVID-19 pandemic as it may provide a fast and efficient route for identifying clinic-ready, safe-in-human antivirals. We here report our effort to identify PLpro inhibitors by screening the ReFRAME library of 11,804 compounds, showing that none inhibit PLpro with any reasonable activity or specificity to justify further progression towards the clinic. We also report our latest efforts to improve piperidine-scaffold inhibitors, 5c and 3k, originally developed for SARS-CoV PLpro. We report molecular details of binding and selectivity, as well as in vitro absorption, distribution, metabolism and excretion (ADME) studies of this scaffold. A co-crystal structure of SARS-CoV-2 PLpro bound to inhibitor 3k guides medicinal chemistry efforts to improve binding and ADME characteristics. We arrive at compounds with improved and favorable solubility and stability characteristics that are tested for inhibiting viral replication. Whilst still requiring significant improvement, our optimized small molecule inhibitors of PLpro display decent antiviral activity in an in vitro SARS-CoV-2 infection model, justifying further optimization.
  • Item
    Thumbnail Image
    Programmed cell death: the pathways to severe COVID-19?
    Bader, SM ; Cooney, JP ; Pellegrini, M ; Doerflinger, M (PORTLAND PRESS LTD, 2022-03)
    Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.
  • Item
    Thumbnail Image
    CRISPR/Cas9-The ultimate weapon to battle infectious diseases?
    Doerflinger, M ; Forsyth, W ; Ebert, G ; Pellegrini, M ; Herold, MJ (WILEY-HINDAWI, 2017-02)
    Infectious diseases are a leading cause of death worldwide. Novel therapeutics are urgently required to treat multidrug-resistant organisms such as Mycobacterium tuberculosis and to mitigate morbidity and mortality caused by acute infections such as malaria and dengue fever virus as well as chronic infections such as human immunodeficiency virus-1 and hepatitis B virus. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, which has revolutionized biomedical research, holds great promise for the identification and validation of novel drug targets. Since its discovery as an adaptive immune system in prokaryotes, the CRISPR/Cas9 system has been developed into a multi-faceted genetic modification tool, which can now be used to induce gene deletions or specific gene insertions, such as conditional alleles or endogenous reporters in virtually any organism. The generation of CRISPR/Cas9 libraries that can be used to perform phenotypic whole genome screens provides an important new tool that will aid in the identification of critical host factors involved in the pathogenesis of infectious diseases. In this review, we will discuss the development and recent applications of the CRISPR/Cas9 system used to identify novel regulators, which might become important in the fight against infectious diseases.
  • Item
    No Preview Available
    Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection
    Doerflinger, M ; Deng, Y ; Whitney, P ; Salvamoser, R ; Engel, S ; Kueh, AJ ; Tai, L ; Bachem, A ; Gressier, E ; Geoghegan, ND ; Wilcox, S ; Rogers, KL ; Garnham, AL ; Dengler, MA ; Bader, SM ; Ebert, G ; Pearson, JS ; De Nardo, D ; Wang, N ; Yang, C ; Pereira, M ; Bryant, CE ; Strugnell, RA ; Vince, JE ; Pellegrini, M ; Strasser, A ; Bedoui, S ; Herold, MJ (CELL PRESS, 2020-09-15)
    Programmed cell death contributes to host defense against pathogens. To investigate the relative importance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macrophages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis had minor impact on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial control in mice and their macrophages, demonstrating that host defense can employ varying components of several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These findings uncover a highly coordinated and flexible cell death system with in-built fail-safe processes that protect the host from intracellular infections.
  • Item
    Thumbnail Image
    Procalcitonin and Interleukin-10 May Assist in Early Prediction of Bacteraemia in Children With Cancer and Febrile Neutropenia
    Doerflinger, M ; Haeusler, GM ; Li-Wai-Suen, CSN ; Clark, JE ; Slavin, M ; Babl, FE ; Allaway, Z ; Mechinaud, F ; Smyth, GK ; De Abreu Lourenco, R ; Phillips, B ; Pellegrini, M ; Thursky, KA (FRONTIERS MEDIA SA, 2021-05-20)
    OBJECTIVES: Febrile neutropenia (FN) causes treatment disruption and unplanned hospitalization in children with cancer. Serum biomarkers are infrequently used to stratify these patients into high or low risk for serious infection. This study investigated plasma abundance of cytokines in children with FN and their ability to predict bacteraemia. METHODS: Thirty-three plasma cytokines, C-reactive protein (CRP) and procalcitonin (PCT) were measured using ELISA assays in samples taken at FN presentation (n = 79) and within 8-24 h (Day 2; n = 31). Optimal thresholds for prediction of bacteraemia were identified and the predictive ability of biomarkers in addition to routinely available clinical variables was assessed. RESULTS: The median age of included FN episodes was 6.0 years and eight (10%) had a bacteraemia. On presentation, elevated PCT, IL-10 and Mip1-beta were significantly associated with bacteraemia, while CRP, IL-6 and IL-8 were not. The combination of PCT (≥0.425 ng/ml) and IL-10 (≥4.37 pg/ml) had a sensitivity of 100% (95% CI 68.8-100%) and specificity of 89% (95% CI 80.0-95.0%) for prediction of bacteraemia, correctly identifying all eight bacteraemia episodes and classifying 16 FN episodes as high-risk. There was limited additive benefit of incorporating clinical variables to this model. On Day 2, there was an 11-fold increase in PCT in episodes with a bacteraemia which was significantly higher than that observed in the non-bacteraemia episodes. CONCLUSION: Elevated PCT and IL-10 accurately identified all bacteraemia episodes in our FN cohort and may enhance the early risk stratification process in this population. Prospective validation and implementation is required to determine the impact on health service utilisation.
  • Item
    Thumbnail Image
    Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice
    Pymm, P ; Adair, A ; Chan, L-J ; Cooney, JP ; Mordant, FL ; Allison, CC ; Lopez, E ; Haycroft, ER ; O'Neill, MT ; Tan, LL ; Dietrich, MH ; Drew, D ; Doerflinger, M ; Dengler, MA ; Scott, NE ; Wheatley, AK ; Gherardin, NA ; Venugopal, H ; Cromer, D ; Davenport, MP ; Pickering, R ; Godfrey, D ; Purcell, DFJ ; Kent, SJ ; Chung, AW ; Subbarao, K ; Pellegrini, M ; Glukhova, A ; Tham, W-H (NATL ACAD SCIENCES, 2021-05-11)
    Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.