Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    The linear ubiquitin chain assembly complex: a new function in thymic T cell differentiation and regulatory T cell homeostasis
    Teh, C ; Lalaoui, N ; Jain, R ; Policheni, A ; Heinlein, M ; Alvarez-Diaz, S ; Rieser, E ; Deuser, S ; Koay, H-F ; Hu, Y ; Kupresanin, F ; O'Reilly, L ; Godfrey, D ; Smyth, G ; Bouillet, P ; Strasser, A ; Walczak, H ; Silke, J ; Gray, D (WILEY-BLACKWELL, 2016-08)
    The linear ubiquitin chain assembly complex (LUBAC) is essential for innate immunity in mice and humans, yet its role in adaptive immunity is unclear. Here we show that the LUBAC components HOIP, HOIL-1 and SHARPIN have essential roles in late thymocyte differentiation, FOXP3+ regulatory T (Treg)-cell development and Treg cell homeostasis. LUBAC activity is not required to prevent TNF-induced apoptosis or necroptosis but is necessary for the transcriptional programme of the penultimate stage of thymocyte differentiation. Treg cell-specific ablation of HOIP causes severe Treg cell deficiency and lethal immune pathology, revealing an ongoing requirement of LUBAC activity for Treg cell homeostasis. These data reveal stage-specific requirements for LUBAC in coordinating the signals required for T-cell differentiation.
  • Item
    Thumbnail Image
    Chronically stimulated human MAIT cells are unexpectedly potent IL-13 producers
    Kelly, J ; Minoda, Y ; Meredith, T ; Cameron, G ; Philipp, M-S ; Pellicci, DG ; Corbett, AJ ; Kurts, C ; Gray, DHD ; Godfrey, D ; Kannourakis, G ; Berzins, SP (WILEY, 2019-09)
    Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize antigens derived from riboflavin biosynthesis. In addition to anti-microbial functions, human MAIT cells are associated with cancers, autoimmunity, allergies and inflammatory disorders, although their role is poorly understood. Activated MAIT cells are well known for their rapid release of Th1 and Th17 cytokines, but we have discovered that chronic stimulation can also lead to potent interleukin (IL)-13 expression. We used RNA-seq and qRT-PCR to demonstrate high expression of the IL-13 gene in chronically stimulated MAIT cells, and directly identify IL-13 using intracellular flow cytometry and multiplex bead analysis of MAIT cell cultures. This unexpected finding has important implications for IL-13-dependent diseases, such as colorectal cancer (CRC), that occur in mucosal areas where MAIT cells are abundant. We identify MAIT cells near CRC tumors and show that these areas and precancerous polyps express high levels of the IL-13 receptor, which promotes tumor progression and metastasis. Our data suggest that MAIT cells have a more complicated role in CRC than currently realized and that they represent a promising new target for immunotherapies where IL-13 can be a critical factor.
  • Item
    No Preview Available
    Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis
    Teh, CE ; Lalaoui, N ; Jain, R ; Policheni, AN ; Heinlein, M ; Alvarez-Diaz, S ; Sheridan, JM ; Rieser, E ; Deuser, S ; Darding, M ; Koay, H-F ; Hu, Y ; Kupresanin, F ; O'Reilly, LA ; Godfrey, DI ; Smyth, GK ; Bouillet, P ; Strasser, A ; Walczak, H ; Silke, J ; Gray, DHD (NATURE PUBLISHING GROUP, 2016-11-18)
    The linear ubiquitin chain assembly complex (LUBAC) is essential for innate immunity in mice and humans, yet its role in adaptive immunity is unclear. Here we show that the LUBAC components HOIP, HOIL-1 and SHARPIN have essential roles in late thymocyte differentiation, FOXP3+ regulatory T (Treg)-cell development and Treg cell homeostasis. LUBAC activity is not required to prevent TNF-induced apoptosis or necroptosis but is necessary for the transcriptional programme of the penultimate stage of thymocyte differentiation. Treg cell-specific ablation of HOIP causes severe Treg cell deficiency and lethal immune pathology, revealing an ongoing requirement of LUBAC activity for Treg cell homeostasis. These data reveal stage-specific requirements for LUBAC in coordinating the signals required for T-cell differentiation.