Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Predicting Risk of Infection in Patients with Newly Diagnosed Multiple Myeloma: Utility of Immune Profiling
    Teh, BW ; Harrison, SJ ; Allison, CC ; Slavin, MA ; Spelman, T ; Worth, LJ ; Thursky, KA ; Ritchie, D ; Pellegrini, M (FRONTIERS MEDIA SA, 2017-10-05)
    BACKGROUND: A translational study in patients with myeloma to determine the utility of immune profiling to predict infection risk in patients with hematological malignancy was conducted. METHODS: Baseline, end of induction, and maintenance peripheral blood mononuclear cells from 40 patients were evaluated. Immune cell populations and cytokines released from 1 × 106 cells/ml cultured in the presence of a panel of stimuli (cytomegalovirus, influenza, S. pneumoniae, phorbol myristate acetate/ionomycin) and in media alone were quantified. Patient characteristics and infective episodes were captured from clinical records. Immunological variables associated with increased risk for infection in the 3-month period following sample collection were identified using univariate analysis (p < 0.05) and refined with multivariable analysis to define a predictive immune profile. RESULTS: 525 stimulant samples with 19,950 stimulant-cytokine combinations across three periods were studied, including 61 episodes of infection. Mitogen-stimulated release of IL3 and IL5 were significantly associated with increased risk for subsequent infection during maintenance therapy. A lower Th1/Th2 ratio and higher cytokine response ratios for IL5 and IL13 during maintenance therapy were also significantly associated with increased risk for infection. On multivariable analysis, only IL5 in response to mitogen stimulation was predictive of infection. The lack of cytokine response and numerical value of immune cells were not predictive of infection. CONCLUSION: Profiling cytokine release in response to mitogen stimulation can assist with predicting subsequent onset of infection in patients with hematological malignancy during maintenance therapy.
  • Item
    Thumbnail Image
    T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments
    Hawkins, ED ; Duarte, D ; Akinduro, O ; Khorshed, RA ; Passaro, D ; Nowicka, M ; Straszkowski, L ; Scott, MK ; Rothery, S ; Ruivo, N ; Foster, K ; Waibel, M ; Johnstone, RW ; Harrison, SJ ; Westerman, DA ; Quach, H ; Gribben, J ; Robinson, MD ; Purton, LE ; Bonnet, D ; Lo Celso, C (NATURE PUBLISHING GROUP, 2016-10-27)
    It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment, rather than specific bone marrow stroma, to combat the invasion by and survival of chemo-resistant T-ALL cells.
  • Item
    Thumbnail Image
    Enumeration, functional responses and cytotoxic capacity of MAIT cells in newly diagnosed and relapsed multiple myeloma
    Gherardin, NA ; Loh, L ; Admojo, L ; Davenport, AJ ; Richardson, K ; Rogers, A ; Darcy, PK ; Jenkins, MR ; Prince, HM ; Harrison, SJ ; Quach, H ; Fairlie, DP ; Kedzierska, K ; McCluskey, J ; Uldrich, AP ; Neeson, PJ ; Ritchie, DS ; Godfrey, DI (NATURE PORTFOLIO, 2018-03-07)
    Mucosal-associated invariant T (MAIT) cells are T cells that recognise vitamin-B derivative Ag presented by the MHC-related-protein 1 (MR1) antigen-presenting molecule. While MAIT cells are highly abundant in humans, their role in tumour immunity remains unknown. Here we have analysed the frequency and function of MAIT cells in multiple myeloma (MM) patients. We show that MAIT cell frequency in blood is reduced compared to healthy adult donors, but comparable to elderly healthy control donors. Furthermore, there was no evidence that MAIT cells accumulated at the disease site (bone marrow) of these patients. Newly diagnosed MM patient MAIT cells had reduced IFNγ production and CD27 expression, suggesting an exhausted phenotype, although IFNγ-producing capacity is restored in relapsed/refractory patient samples. Moreover, immunomodulatory drugs Lenalidomide and Pomalidomide, indirectly inhibited MAIT cell activation. We further show that cell lines can be pulsed with vitamin-B derivative Ags and that these can be presented via MR1 to MAIT cells in vitro, to induce cytotoxic activity comparable to that of natural killer (NK) cells. Thus, MAIT cells are reduced in MM patients, which may contribute to disease in these individuals, and moreover, MAIT cells may represent new immunotherapeutic targets for treatment of MM and other malignancies.