Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    No Preview Available
    Agm1/Pgm-3-mediated sugar nucleotide synthesis is essential for hematopoiesis and development
    Greig, KT ; Antonchuk, J ; Metcalf, D ; Morgan, PO ; Krebs, DL ; Zhang, J-G ; Hacking, DF ; Bode, L ; Robb, L ; Kranz, C ; de Graaf, C ; Bahlo, M ; Nicola, NA ; Nutt, SL ; Freeze, HH ; Alexander, WS ; Hilton, DJ ; Kile, BT (AMER SOC MICROBIOLOGY, 2007-08)
    Carbohydrate modification of proteins includes N-linked and O-linked glycosylation, proteoglycan formation, glycosylphosphatidylinositol anchor synthesis, and O-GlcNAc modification. Each of these modifications requires the sugar nucleotide UDP-GlcNAc, which is produced via the hexosamine biosynthesis pathway. A key step in this pathway is the interconversion of GlcNAc-6-phosphate (GlcNAc-6-P) and GlcNAc-1-P, catalyzed by phosphoglucomutase 3 (Pgm3). In this paper, we describe two hypomorphic alleles of mouse Pgm3 and show there are specific physiological consequences of a graded reduction in Pgm3 activity and global UDP-GlcNAc levels. Whereas mice lacking Pgm3 die prior to implantation, animals with less severe reductions in enzyme activity are sterile, exhibit changes in pancreatic architecture, and are anemic, leukopenic, and thrombocytopenic. These phenotypes are accompanied by specific rather than wholesale changes in protein glycosylation, suggesting that while universally required, the functions of certain proteins and, as a consequence, certain cell types are especially sensitive to reductions in Pgm3 activity.
  • Item
    Thumbnail Image
    Chromosomes distribute randomly to, but not within, human neutrophil nuclear lobes
    Keenan, CR ; Mlodzianoski, MJ ; Coughlan, HD ; Bediaga, NG ; Naselli, G ; Lucas, EC ; Wang, Q ; de Graaf, CA ; Hilton, DJ ; Harrison, LC ; Smyth, GK ; Rogers, KL ; Boudier, T ; Allan, RS ; Johanson, TM (CELL PRESS, 2021-03-19)
    The proximity pattern and radial distribution of chromosome territories within spherical nuclei are random and non-random, respectively. Whether this distribution pattern is conserved in the partitioned or lobed nuclei of polymorphonuclear cells is unclear. Here we use chromosome paint technology to examine the chromosome territories of all 46 chromosomes in hundreds of single human neutrophils - an abundant and famously polymorphonuclear immune cell. By comparing the distribution of chromosomes to randomly shuffled controls and validating with orthogonal chromosome conformation capture technology, we show for the first time that human chromosomes randomly distribute to neutrophil nuclear lobes, while maintaining a non-random radial distribution within these lobes. Furthermore, we demonstrate that chromosome length correlates with three-dimensional volume not only in neutrophils but other human immune cells. This work demonstrates that chromosomes are largely passive passengers during the neutrophil lobing process but are able to subsequently maintain their macro-level organization within lobes.
  • Item
    Thumbnail Image
    Membrane budding is a major mechanism of in vivo platelet biogenesis
    Potts, KS ; Farley, A ; Dawson, CA ; Rimes, J ; Biben, C ; de Graaf, C ; Potts, MA ; Stonehouse, OJ ; Carmagnac, A ; Gangatirkar, P ; Josefsson, EC ; Anttila, C ; Amann-Zalcenstein, D ; Naik, S ; Alexander, WS ; Hilton, DJ ; Hawkins, ED ; Taoudi, S (ROCKEFELLER UNIV PRESS, 2020-09)
    How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the native prenatal and adult environments, the frequency and rate of proplatelet formation is incompatible with the physiological demands of platelet replacement. We resolve this inconsistency by performing in-depth analysis of plasma membrane budding, a cellular process that has previously been dismissed as a source of platelet production. Our studies demonstrate that membrane budding results in the sustained release of platelets directly into the peripheral circulation during both fetal and adult life without induction of cell death or proplatelet formation. In support of this model, we demonstrate that in mice deficient for NF-E2 (the thrombopoietic master regulator), the absence of membrane budding correlates with failure of in vivo platelet production. Accordingly, we propose that membrane budding, rather than proplatelet formation, supplies the majority of the platelet biomass.
  • Item
    Thumbnail Image
    Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity
    Majewski, IJ ; Blewitt, ME ; de Graaf, CA ; McManus, EJ ; Bahlo, M ; Hilton, AA ; Hyland, CD ; Smyth, GK ; Corbin, JE ; Metcalf, D ; Alexander, WS ; Hilton, DJ ; Goodell, MA (PUBLIC LIBRARY SCIENCE, 2008-04)
    Polycomb group proteins are transcriptional repressors that play a central role in the establishment and maintenance of gene expression patterns during development. Using mice with an N-ethyl-N-nitrosourea (ENU)-induced mutation in Suppressor of Zeste 12 (Suz12), a core component of Polycomb Repressive Complex 2 (PRC2), we show here that loss of Suz12 function enhances hematopoietic stem cell (HSC) activity. In addition to these effects on a wild-type genetic background, mutations in Suz12 are sufficient to ameliorate the stem cell defect and thrombocytopenia present in mice that lack the thrombopoietin receptor (c-Mpl). To investigate the molecular targets of the PRC2 complex in the HSC compartment, we examined changes in global patterns of gene expression in cells deficient in Suz12. We identified a distinct set of genes that are regulated by Suz12 in hematopoietic cells, including eight genes that appear to be highly responsive to PRC2 function within this compartment. These data suggest that PRC2 is required to maintain a specific gene expression pattern in hematopoiesis that is indispensable to normal stem cell function.
  • Item
    Thumbnail Image
    A Mouse Model of Harlequin Ichthyosis Delineates a Key Role for Abca12 in Lipid Homeostasis
    Smyth, I ; Hacking, DF ; Hilton, AA ; Mukhamedova, N ; Meikle, PJ ; Ellis, S ; Slattery, K ; Collinge, JE ; de Graaf, CA ; Bahlo, M ; Sviridov, D ; Kile, BT ; Hilton, DJ ; Beier, DR (PUBLIC LIBRARY SCIENCE, 2008-09)
    Harlequin Ichthyosis (HI) is a severe and often lethal hyperkeratotic skin disease caused by mutations in the ABCA12 transport protein. In keratinocytes, ABCA12 is thought to regulate the transfer of lipids into small intracellular trafficking vesicles known as lamellar bodies. However, the nature and scope of this regulation remains unclear. As part of an original recessive mouse ENU mutagenesis screen, we have identified and characterised an animal model of HI and showed that it displays many of the hallmarks of the disease including hyperkeratosis, loss of barrier function, and defects in lipid homeostasis. We have used this model to follow disease progression in utero and present evidence that loss of Abca12 function leads to premature differentiation of basal keratinocytes. A comprehensive analysis of lipid levels in mutant epidermis demonstrated profound defects in lipid homeostasis, illustrating for the first time the extent to which Abca12 plays a pivotal role in maintaining lipid balance in the skin. To further investigate the scope of Abca12's activity, we have utilised cells from the mutant mouse to ascribe direct transport functions to the protein and, in doing so, we demonstrate activities independent of its role in lamellar body function. These cells have severely impaired lipid efflux leading to intracellular accumulation of neutral lipids. Furthermore, we identify Abca12 as a mediator of Abca1-regulated cellular cholesterol efflux, a finding that may have significant implications for other diseases of lipid metabolism and homeostasis, including atherosclerosis.
  • Item
    Thumbnail Image
    Estimating the proportion of microarray probes expressed in an RNA sample
    Shi, W ; de Graaf, CA ; Kinkel, SA ; Achtman, AH ; Baldwin, T ; Schofield, L ; Scott, HS ; Hilton, DJ ; Smyth, GK (OXFORD UNIV PRESS, 2010-04)
    A fundamental question in microarray analysis is the estimation of the number of expressed probes in different RNA samples. Negative control probes available in the latest microarray platforms, such as Illumina whole genome expression BeadChips, provide a unique opportunity to estimate the number of expressed probes without setting a threshold. A novel algorithm was proposed in this study to estimate the number of expressed probes in an RNA sample by utilizing these negative controls to measure background noise. The performance of the algorithm was demonstrated by comparing different generations of Illumina BeadChips, comparing the set of probes targeting well-characterized RefSeq NM transcripts with other probes on the array and comparing pure samples with heterogenous samples. Furthermore, hematopoietic stem cells were found to have a larger transcriptome than progenitor cells. Aire knockout medullary thymic epithelial cells were shown to have significantly less expressed probes than matched wild-type cells.
  • Item
    Thumbnail Image
    Identification of a Siglec-F plus granulocyte-macrophage progenitor
    Bolden, JE ; Lucas, EC ; Zhou, G ; O'Sullivan, JA ; de Graaf, CA ; McKenzie, MD ; Di Rago, L ; Baldwin, TM ; Shortt, J ; Alexander, WS ; Bochner, BS ; Ritchie, ME ; Hilton, DJ ; Fairfax, KA (WILEY, 2018-07)
    In recent years multi-parameter flow cytometry has enabled identification of cells at major stages in myeloid development; from pluripotent hematopoietic stem cells, through populations with increasingly limited developmental potential (common myeloid progenitors and granulocyte-macrophage progenitors), to terminally differentiated mature cells. Myeloid progenitors are heterogeneous, and the surface markers that define transition states from progenitors to mature cells are poorly characterized. Siglec-F is a surface glycoprotein frequently used in combination with IL-5 receptor alpha (IL5Rα) for the identification of murine eosinophils. Here, we describe a CD11b+ Siglec-F+ IL5Rα- myeloid population in the bone marrow of C57BL/6 mice. The CD11b+ Siglec-F+ IL5Rα- cells are retained in eosinophil deficient PHIL mice, and are not expanded upon overexpression of IL-5, indicating that they are upstream or independent of the eosinophil lineage. We show these cells to have GMP-like developmental potential in vitro and in vivo, and to be transcriptionally distinct from the classically described GMP population. The CD11b+ Siglec-F+ IL5Rα- population expands in the bone marrow of Myb mutant mice, which is potentially due to negative transcriptional regulation of Siglec-F by Myb. Lastly, we show that the role of Siglec-F may be, at least in part, to regulate GMP viability.
  • Item
    Thumbnail Image
    PU.1 is required for the Developmental Progression of Multipotent Progenitors to common lymphoid Progenitors
    Pang, SHM ; de Graaf, CA ; Hilton, DJ ; Huntington, ND ; Carotta, S ; Wu, L ; Nutt, SL (FRONTIERS MEDIA SA, 2018-06-11)
    The transcription factor PU.1 is required for the development of mature myeloid and lymphoid cells. Due to this essential role and the importance of PU.1 in regulating several signature markers of lymphoid progenitors, its precise function in early lymphopoiesis has been difficult to define. Here, we demonstrate that PU.1 was required for efficient generation of lymphoid-primed multipotent progenitors (LMPPs) from hematopoietic stem cells and was essential for the subsequent formation of common lymphoid progenitors (CLPs). By contrast, further differentiation into the B-cell lineage was independent of PU.1. Examination of the transcriptional changes in conditional progenitors revealed that PU.1 activates lymphoid genes in LMPPs, while repressing genes normally expressed in neutrophils. These data identify PU.1 as a critical regulator of lymphoid priming and the transition between LMPPs and CLPs.
  • Item
    Thumbnail Image
    Transcriptional profiling of eosinophil subsets in interleukin-5 transgenic mice
    Fairfax, KA ; Bolden, JE ; Robinson, AJ ; Lucas, EC ; Baldwin, TM ; Ramsay, KA ; Cole, R ; Hilton, DJ ; de Graaf, CA (OXFORD UNIV PRESS, 2018-07)
    Eosinophils are important in fighting parasitic infections and are implicated in the pathogenesis of asthma and allergy. IL-5 is a critical regulator of eosinophil development, controlling proliferation, differentiation, and maturation of the lineage. Mice that constitutively express IL-5 have in excess of 10-fold more eosinophils in the hematopoietic organs than their wild type (WT) counterparts. We have identified that much of this expansion is in a population of Siglec-F high eosinophils, which are rare in WT mice. In this study, we assessed transcription in myeloid progenitors, eosinophil precursors, and Siglec-F medium and Siglec-F high eosinophils from IL-5 transgenic mice and in doing so have created a useful resource for eosinophil biologists. We have then utilized these populations to construct an eosinophil trajectory based on gene expression and to identify gene sets that are associated with eosinophil lineage progression. Cell cycle genes were significantly associated with the trajectory, and we experimentally demonstrate an increasing trend toward quiescence along the trajectory. Additionally, we found gene expression changes associated with constitutive IL-5 signaling in eosinophil progenitors, many of which were not observed in eosinophils.
  • Item
    Thumbnail Image
    Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans
    Choi, J ; Baldwin, TM ; Wong, M ; Bolden, JE ; Fairfax, KA ; Lucas, EC ; Cole, R ; Biben, C ; Morgan, C ; Ramsay, KA ; Ng, AP ; Kauppi, M ; Corcoran, LM ; Shi, W ; Wilson, N ; Wilson, MJ ; Alexander, WS ; Hilton, DJ ; de Graaf, CA (OXFORD UNIV PRESS, 2019-01-08)
    During haematopoiesis, haematopoietic stem cells differentiate into restricted potential progenitors before maturing into the many lineages required for oxygen transport, wound healing and immune response. We have updated Haemopedia, a database of gene-expression profiles from a broad spectrum of haematopoietic cells, to include RNA-seq gene-expression data from both mice and humans. The Haemopedia RNA-seq data set covers a wide range of lineages and progenitors, with 57 mouse blood cell types (flow sorted populations from healthy mice) and 12 human blood cell types. This data set has been made accessible for exploration and analysis, to researchers and clinicians with limited bioinformatics experience, on our online portal Haemosphere: https://www.haemosphere.org. Haemosphere also includes nine other publicly available high-quality data sets relevant to haematopoiesis. We have added the ability to compare gene expression across data sets and species by curating data sets with shared lineage designations or to view expression gene vs gene, with all plots available for download by the user.