Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby
    Wong, ESW ; Papenfuss, AT ; Heger, A ; Hsu, AL ; Ponting, CP ; Miller, RD ; Fenelon, JC ; Renfree, MB ; Gibbs, RA ; Belov, K (BMC, 2011-08-19)
    BACKGROUND: The thymus plays a critical role in the development and maturation of T-cells. Humans have a single thoracic thymus and presence of a second thymus is considered an anomaly. However, many vertebrates have multiple thymuses. The tammar wallaby has two thymuses: a thoracic thymus (typically found in all mammals) and a dominant cervical thymus. Researchers have known about the presence of the two wallaby thymuses since the 1800s, but no genome-wide research has been carried out into possible functional differences between the two thymic tissues. Here, we used pyrosequencing to compare the transcriptomes of a cervical and thoracic thymus from a single 178 day old tammar wallaby. RESULTS: We show that both the tammar thoracic and the cervical thymuses displayed gene expression profiles consistent with roles in T-cell development. Both thymuses expressed genes that mediate distinct phases of T-cells differentiation, including the initial commitment of blood stem cells to the T-lineage, the generation of T-cell receptor diversity and development of thymic epithelial cells. Crucial immune genes, such as chemokines were also present. Comparable patterns of expression of non-coding RNAs were seen. 67 genes differentially expressed between the two thymuses were detected, and the possible significance of these results are discussed. CONCLUSION: This is the first study comparing the transcriptomes of two thymuses from a single individual. Our finding supports that both thymuses are functionally equivalent and drive T-cell development. These results are an important first step in the understanding of the genetic processes that govern marsupial immunity, and also allow us to begin to trace the evolution of the mammalian immune system.
  • Item
    Thumbnail Image
    Socrates: identification of genomic rearrangements in tumour genomes by re-aligning soft clipped reads
    Schroeder, J ; Hsu, A ; Boyle, SE ; Macintyre, G ; Cmero, M ; Tothill, RW ; Johnstone, RW ; Shackleton, M ; Papenfuss, AT (OXFORD UNIV PRESS, 2014-04-15)
    MOTIVATION: Methods for detecting somatic genome rearrangements in tumours using next-generation sequencing are vital in cancer genomics. Available algorithms use one or more sources of evidence, such as read depth, paired-end reads or split reads to predict structural variants. However, the problem remains challenging due to the significant computational burden and high false-positive or false-negative rates. RESULTS: In this article, we present Socrates (SOft Clip re-alignment To idEntify Structural variants), a highly efficient and effective method for detecting genomic rearrangements in tumours that uses only split-read data. Socrates has single-nucleotide resolution, identifies micro-homologies and untemplated sequence at break points, has high sensitivity and high specificity and takes advantage of parallelism for efficient use of resources. We demonstrate using simulated and real data that Socrates performs well compared with a number of existing structural variant detection tools. AVAILABILITY AND IMPLEMENTATION: Socrates is released as open source and available from http://bioinf.wehi.edu.au/socrates CONTACT: papenfuss@wehi.edu.au Supplementary information: Supplementary data are available at Bioinformatics online.
  • Item
    Thumbnail Image
    Novel venom gene discovery in the platypus
    Whittington, CM ; Papenfuss, AT ; Locke, DP ; Mardis, ER ; Wilson, RK ; Abubucker, S ; Mitreva, M ; Wong, ESW ; Hsu, AL ; Kuchel, PW ; Belov, K ; Warren, WC (BIOMED CENTRAL LTD, 2010)
    BACKGROUND: To date, few peptides in the complex mixture of platypus venom have been identified and sequenced, in part due to the limited amounts of platypus venom available to study. We have constructed and sequenced a cDNA library from an active platypus venom gland to identify the remaining components. RESULTS: We identified 83 novel putative platypus venom genes from 13 toxin families, which are homologous to known toxins from a wide range of vertebrates (fish, reptiles, insectivores) and invertebrates (spiders, sea anemones, starfish). A number of these are expressed in tissues other than the venom gland, and at least three of these families (those with homology to toxins from distant invertebrates) may play non-toxin roles. Thus, further functional testing is required to confirm venom activity. However, the presence of similar putative toxins in such widely divergent species provides further evidence for the hypothesis that there are certain protein families that are selected preferentially during evolution to become venom peptides. We have also used homology with known proteins to speculate on the contributions of each venom component to the symptoms of platypus envenomation. CONCLUSIONS: This study represents a step towards fully characterizing the first mammal venom transcriptome. We have found similarities between putative platypus toxins and those of a number of unrelated species, providing insight into the evolution of mammalian venom.
  • Item
    Thumbnail Image
    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development
    Renfree, MB ; Papenfuss, AT ; Deakin, JE ; Lindsay, J ; Heider, T ; Belov, K ; Rens, W ; Waters, PD ; Pharo, EA ; Shaw, G ; Swwong, E ; Lefevre, CM ; Nicholas, KR ; Kuroki, Y ; Wakefield, MJ ; Zenger, KR ; Wang, C ; Ferguson-Smith, M ; Nicholas, FW ; Hickford, D ; Yu, H ; Short, KR ; Siddle, HV ; Frankenberg, SR ; Chew, KY ; Menzies, BR ; Stringer, JM ; Suzuki, S ; Hore, TA ; Delbridge, ML ; Mohammadi, A ; Schneider, NY ; Hu, Y ; O'Hara, W ; Al Nadaf, S ; Wu, C ; Feng, Z-P ; Cocks, BG ; Wang, J ; Flicek, P ; Searle, SMJ ; Fairley, S ; Beal, K ; Herrero, J ; Carone, DM ; Suzuki, Y ; Sugano, S ; Toyoda, A ; Sakaki, Y ; Kondo, S ; Nishida, Y ; Tatsumoto, S ; Mandiou, I ; Hsu, A ; McColl, KA ; Lansdell, B ; Weinstock, G ; Kuczek, E ; McGrath, A ; Wilson, P ; Men, A ; Hazar-Rethinam, M ; Hall, A ; Davis, J ; Wood, D ; Williams, S ; Sundaravadanam, Y ; Muzny, DM ; Jhangiani, SN ; Lewis, LR ; Morgan, MB ; Okwuonu, GO ; Ruiz, SJ ; Santibanez, J ; Nazareth, L ; Cree, A ; Fowler, G ; Kovar, CL ; Dinh, HH ; Joshi, V ; Jing, C ; Lara, F ; Thornton, R ; Chen, L ; Deng, J ; Liu, Y ; Shen, JY ; Song, X-Z ; Edson, J ; Troon, C ; Thomas, D ; Stephens, A ; Yapa, L ; Levchenko, T ; Gibbs, RA ; Cooper, DW ; Speed, TP ; Fujiyama, A ; Graves, JAM ; O'Neill, RJ ; Pask, AJ ; Forrest, SM ; Worley, KC (BMC, 2011)
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.