Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias
    Kim, S-K ; Knight, DA ; Jones, LR ; Vervoort, S ; Ng, AP ; Seymour, JF ; Bradner, JE ; Waibel, M ; Kats, L ; Johnstone, RW (COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT, 2018-06-01)
    Activating JAK2 point mutations are implicated in the pathogenesis of myeloid and lymphoid malignancies, including high-risk B-cell acute lymphoblastic leukemia (B-ALL). In preclinical studies, treatment of JAK2 mutant leukemias with type I JAK2 inhibitors (e.g., Food and Drug Administration [FDA]-approved ruxolitinib) provided limited single-agent responses, possibly due to paradoxical JAK2Y1007/1008 hyperphosphorylation induced by these agents. To determine the importance of mutant JAK2 in B-ALL initiation and maintenance, we developed unique genetically engineered mouse models of B-ALL driven by overexpressed Crlf2 and mutant Jak2, recapitulating the genetic aberrations found in human B-ALL. While expression of mutant Jak2 was necessary for leukemia induction, neither its continued expression nor enzymatic activity was required to maintain leukemia survival and rapid proliferation. CRLF2/JAK2 mutant B-ALLs with sustained depletion or pharmacological inhibition of JAK2 exhibited enhanced expression of c-Myc and prominent up-regulation of c-Myc target genes. Combined indirect targeting of c-Myc using the BET bromodomain inhibitor JQ1 and direct targeting of JAK2 with ruxolitinib potently killed JAK2 mutant B-ALLs.
  • Item
    Thumbnail Image
    Serglycin determines secretory granule repertoire and regulates natural killer cell and cytotoxic T lymphocyte cytotoxicity
    Sutton, VR ; Brennan, AJ ; Ellis, S ; Danne, J ; Thia, K ; Jenkins, MR ; Voskoboinik, I ; Pejler, G ; Johnstone, RW ; Andrews, DM ; Trapani, JA (WILEY, 2016-03)
    The anionic proteoglycan serglycin is a major constituent of secretory granules in cytotoxic T lymphocyte (CTL)/natural killer (NK) cells, and is proposed to promote the safe storage of the mostly cationic granule toxins, granzymes and perforin. Despite the extensive defects of mast cell function reported in serglycin gene-disrupted mice, no comprehensive study of physiologically relevant CTL/NK cell populations has been reported. We show that the cytotoxicity of serglycin-deficient CTL and NK cells is severely compromised but can be partly compensated in both cell types when they become activated. Reduced intracellular granzyme B levels were noted, particularly in CD27(+) CD11b(+) mature NK cells, whereas serglycin(-/-) TCR-transgenic (OTI) CD8 T cells also had reduced perforin stores. Culture supernatants from serglycin(-/-) OTI T cells and interleukin-2-activated NK contained increased granzyme B, linking reduced storage with heightened export. By contrast, granzyme A was not significantly reduced in cells lacking serglycin, indicating differentially regulated trafficking and/or storage for the two granzymes. A quantitative analysis of different granule classes by transmission electronmicroscopy showed a selective loss of dense-core granules in serglycin(-/-) CD8(+) CTLs, although other granule types were maintained quantitatively. The findings of the present study show that serglycin plays a critical role in the maturation of dense-core cytotoxic granules in cytotoxic lymphocytes and the trafficking and storage of perforin and granzyme B, whereas granzyme A is unaffected. The skewed retention of cytotoxic effector molecules markedly reduces CTL/NK cell cytotoxicity, although this is partly compensated for as a result of activating the cells by physiological means.
  • Item
    Thumbnail Image
    Socrates: identification of genomic rearrangements in tumour genomes by re-aligning soft clipped reads
    Schroeder, J ; Hsu, A ; Boyle, SE ; Macintyre, G ; Cmero, M ; Tothill, RW ; Johnstone, RW ; Shackleton, M ; Papenfuss, AT (OXFORD UNIV PRESS, 2014-04-15)
    MOTIVATION: Methods for detecting somatic genome rearrangements in tumours using next-generation sequencing are vital in cancer genomics. Available algorithms use one or more sources of evidence, such as read depth, paired-end reads or split reads to predict structural variants. However, the problem remains challenging due to the significant computational burden and high false-positive or false-negative rates. RESULTS: In this article, we present Socrates (SOft Clip re-alignment To idEntify Structural variants), a highly efficient and effective method for detecting genomic rearrangements in tumours that uses only split-read data. Socrates has single-nucleotide resolution, identifies micro-homologies and untemplated sequence at break points, has high sensitivity and high specificity and takes advantage of parallelism for efficient use of resources. We demonstrate using simulated and real data that Socrates performs well compared with a number of existing structural variant detection tools. AVAILABILITY AND IMPLEMENTATION: Socrates is released as open source and available from http://bioinf.wehi.edu.au/socrates CONTACT: papenfuss@wehi.edu.au Supplementary information: Supplementary data are available at Bioinformatics online.
  • Item
    Thumbnail Image
    Lethal Giant Larvae 1 Tumour Suppressor Activity Is Not Conserved in Models of Mammalian T and B Cell Leukaemia
    Hawkins, ED ; Oliaro, J ; Ramsbottom, KM ; Ting, SB ; Sacirbegovic, F ; Harvey, M ; Kinwell, T ; Ghysdael, J ; Johnstone, RW ; Humbert, PO ; Russell, SM ; Vooijs, M (PUBLIC LIBRARY SCIENCE, 2014-01-27)
    In epithelial and stem cells, lethal giant larvae (Lgl) is a potent tumour suppressor, a regulator of Notch signalling, and a mediator of cell fate via asymmetric cell division. Recent evidence suggests that the function of Lgl is conserved in mammalian haematopoietic stem cells and implies a contribution to haematological malignancies. To date, direct measurement of the effect of Lgl expression on malignancies of the haematopoietic lineage has not been tested. In Lgl1⁻/⁻ mice, we analysed the development of haematopoietic malignancies either alone, or in the presence of common oncogenic lesions. We show that in the absence of Lgl1, production of mature white blood cell lineages and long-term survival of mice are not affected. Additionally, loss of Lgl1 does not alter leukaemia driven by constitutive Notch, c-Myc or Jak2 signalling. These results suggest that the role of Lgl1 in the haematopoietic lineage might be restricted to specific co-operating mutations and a limited number of cellular contexts.
  • Item
    Thumbnail Image
    Genomic characterisation of Eμ-Myc mouse lymphomas identifies Bcor as a Myc co-operative tumour-suppressor gene
    Lefebure, M ; Tothill, RW ; Kruse, E ; Hawkins, ED ; Shortt, J ; Matthews, GM ; Gregory, GP ; Martin, BP ; Kelly, MJ ; Todorovski, I ; Doyle, MA ; Lupat, R ; Li, J ; Schroeder, J ; Wall, M ; Craig, S ; Poortinga, G ; Cameron, D ; Bywater, M ; Kats, L ; Gearhart, MD ; Bardwell, VJ ; Dickins, RA ; Hannan, RD ; Papenfuss, AT ; Johnstone, RW (NATURE PUBLISHING GROUP, 2017-03-06)
    The Eμ-Myc mouse is an extensively used model of MYC driven malignancy; however to date there has only been partial characterization of MYC co-operative mutations leading to spontaneous lymphomagenesis. Here we sequence spontaneously arising Eμ-Myc lymphomas to define transgene architecture, somatic mutations, and structural alterations. We identify frequent disruptive mutations in the PRC1-like component and BCL6-corepressor gene Bcor. Moreover, we find unexpected concomitant multigenic lesions involving Cdkn2a loss and other cancer genes including Nras, Kras and Bcor. These findings challenge the assumed two-hit model of Eμ-Myc lymphoma and demonstrate a functional in vivo role for Bcor in suppressing tumorigenesis.
  • Item
    Thumbnail Image
    T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments
    Hawkins, ED ; Duarte, D ; Akinduro, O ; Khorshed, RA ; Passaro, D ; Nowicka, M ; Straszkowski, L ; Scott, MK ; Rothery, S ; Ruivo, N ; Foster, K ; Waibel, M ; Johnstone, RW ; Harrison, SJ ; Westerman, DA ; Quach, H ; Gribben, J ; Robinson, MD ; Purton, LE ; Bonnet, D ; Lo Celso, C (NATURE PUBLISHING GROUP, 2016-10-27)
    It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment, rather than specific bone marrow stroma, to combat the invasion by and survival of chemo-resistant T-ALL cells.
  • Item
    Thumbnail Image
    Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells
    Valente, LJ ; Aubrey, BJ ; Herold, MJ ; Kelly, GL ; Happo, L ; Scott, CL ; Newbold, A ; Johnstone, RW ; Huang, DCS ; Vassilev, LT ; Strasser, A (CELL PRESS, 2016-03-01)
    Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.