Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 20
  • Item
    Thumbnail Image
    Population genetic structure between Yap and Palau for the coral Acropora hyacinthus.
    Cros, A ; Toonen, RJ ; Davies, SW ; Karl, SA (PeerJ, 2016)
    Information on connectivity is becoming increasingly in demand as marine protected areas are being designed as an integral part of a network to protect marine resources at the ecosystem level. Larval dispersal and population structure, however, remain very difficult to assess. Here, we tested the predictions of a detailed oceanographic connectivity model of larval dispersal and coral recruitment within Palau and between Palau and Yap, which was developed to support the review of the existing network of marine protected areas in Palau. We used high throughput microsatellite genotyping of the coral Acropora hyacinthus to characterize population genetic structure. Pairwise F' ST values between Palau and Yap (0.10), Palau and Ngulu (0.09) and Yap and Ngulu (0.09) were all significant and similar to pairwise F' ST values of sites within Palau (0.02-0.12) and within Yap (0.02-0.09) highlighting structure at island scale and indicating that recruitment may be even more localized than previously anticipated. A bottleneck test did not reveal any signs of a founder effect between Yap and Palau. Overall, the data supports the idea that recovery of A. hyacinthus in Palau did not come exclusively from a single source but most likely came from a combination of areas, including sites within Palau. In light of these results there seems to be very little connectivity around the barrier reef and management recommendation would be to increase the number or the size of MPAs within Palau.
  • Item
    Thumbnail Image
    Molecular epidemiology of residual Plasmodium vivax transmission in a paediatric cohort in Solomon Islands
    Quah, YW ; Waltmann, A ; Karl, S ; White, MT ; Vahi, V ; Darcy, A ; Pitakaka, F ; Whittaker, M ; Tisch, DJ ; Barry, A ; Barnadas, C ; Kazura, J ; Mueller, I (BMC, 2019-03-28)
    BACKGROUND: Following the scale-up of intervention efforts, malaria burden has decreased dramatically in Solomon Islands (SI). Submicroscopic and asymptomatic Plasmodium vivax infections are now the major challenge for malaria elimination in this country. Since children have higher risk of contracting malaria, this study investigated the dynamics of Plasmodium spp. infections among children including the associated risk factors of residual P. vivax burden. METHODS: An observational cohort study was conducted among 860 children aged 0.5-12 years in Ngella (Central Islands Province, SI). Children were monitored by active and passive surveillances for Plasmodium spp. infections and illness. Parasites were detected by quantitative real-time PCR (qPCR) and genotyped. Comprehensive statistical analyses of P. vivax infection prevalence, molecular force of blood stage infection (molFOB) and infection density were conducted. RESULTS: Plasmodium vivax infections were common (overall prevalence: 11.9%), whereas Plasmodium falciparum infections were rare (0.3%) but persistent. Although children acquire an average of 1.1 genetically distinct P. vivax blood-stage infections per year, there was significant geographic heterogeneity in the risks of P. vivax infections across Ngella (prevalence: 1.2-47.4%, p < 0.01; molFOB: 0.05-4.6/year, p < 0.01). Malaria incidence was low (IR: 0.05 episodes/year-at-risk). Age and measures of high exposure were the key risk factors for P. vivax infections and disease. Malaria incidence and infection density decreased with age, indicating significant acquisition of immunity. G6PD deficient children (10.8%) that did not receive primaquine treatment had a significantly higher prevalence (aOR: 1.77, p = 0.01) and increased risk of acquiring new bloodstage infections (molFOB aIRR: 1.51, p = 0.03), underscoring the importance of anti-relapse treatment. CONCLUSION: Residual malaria transmission in Ngella exhibits strong heterogeneity and is characterized by a high proportion of submicroscopic and asymptomatic P. vivax infections, alongside sporadic P. falciparum infections. Implementing an appropriate primaquine treatment policy to prevent P. vivax relapses and specific targeting of control interventions to high risk areas will be required to accelerate ongoing control and elimination activities.
  • Item
    Thumbnail Image
    Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated malaria in Papua New Guinea
    Tavul, L ; Hetzel, MW ; Teliki, A ; Walsh, D ; Kiniboro, B ; Rare, L ; Pulford, J ; Siba, PM ; Karl, S ; Makita, L ; Robinson, L ; Kattenberg, JH ; Laman, M ; Oswyn, G ; Mueller, I (BMC, 2018-10-05)
    BACKGROUND: In 2009, the Papua New Guinea (PNG) Department of Health adopted artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DHA-PPQ) as the first- and second-line treatments for uncomplicated malaria, respectively. This study was conducted to assess the efficacy of both drugs following adoption of the new policy. METHODS: Between June 2012 and September 2014, a therapeutic efficacy study was conducted in East Sepik and Milne Bay Provinces of PNG in accordance with the standard World Health Organization (WHO) protocol for surveillance of anti-malarial drug efficacy. Patients ≥ 6 months of age with microscopy confirmed Plasmodium falciparum or Plasmodium vivax mono-infections were enrolled, treated with AL or DHA-PPQ, and followed up for 42 days. Study endpoints were adequate clinical and parasitological response (ACPR) on days 28 and 42. The in vitro efficacy of anti-malarials and the prevalence of selected molecular markers of resistance were also determined. RESULTS: A total of 274 P. falciparum and 70 P. vivax cases were enrolled. The day-42 PCR-corrected ACPR for P. falciparum was 98.1% (104/106) for AL and 100% (135/135) for DHA-PPQ. The day-42 PCR-corrected ACPR for P. vivax was 79.0% (15/19) for AL and 92.3% (36/39) for DHA-PPQ. Day 3 parasite clearance of P. falciparum was 99.2% with AL and 100% with DHA-PPQ. In vitro testing of 96 samples revealed low susceptibility to chloroquine (34% of samples above IC50 threshold) but not to lumefantrine (0%). Molecular markers assessed in a sub-set of the study population indicated high rates of chloroquine resistance in P. falciparum (pfcrt SVMNT: 94.2%, n = 104) and in P. vivax (pvmdr1 Y976F: 64.8%, n = 54). CONCLUSIONS: AL and DHA-PPQ were efficacious as first- and second-line treatments for uncomplicated malaria in PNG. Continued in vivo efficacy monitoring is warranted considering the threat of resistance to artemisinin and partner drugs in the region and scale-up of artemisinin-based combination therapy in PNG.
  • Item
    Thumbnail Image
    Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax
    White, MT ; Walker, P ; Karl, S ; Hetzel, MW ; Freeman, T ; Waltmann, A ; Laman, M ; Robinson, LJ ; Ghani, A ; Mueller, I (NATURE PUBLISHING GROUP, 2018-08-17)
    Plasmodium vivax poses unique challenges for malaria control and elimination, notably the potential for relapses to maintain transmission in the face of drug-based treatment and vector control strategies. We developed an individual-based mathematical model of P. vivax transmission calibrated to epidemiological data from Papua New Guinea (PNG). In many settings in PNG, increasing bed net coverage is predicted to reduce transmission to less than 0.1% prevalence by light microscopy, however there is substantial risk of rebounds in transmission if interventions are removed prematurely. In several high transmission settings, model simulations predict that combinations of existing interventions are not sufficient to interrupt P. vivax transmission. This analysis highlights the potential options for the future of P. vivax control: maintaining existing public health gains by keeping transmission suppressed through indefinite distribution of interventions; or continued development of strategies based on existing and new interventions to push for further reduction and towards elimination.
  • Item
    Thumbnail Image
    Flickers of speciation: Sympatric colour morphs of the arc-eye hawkfish, Paracirrhites arcatus, reveal key elements of divergence with gene flow.
    Whitney, JL ; Bowen, BW ; Karl, SA (Wiley, 2018-03)
    One of the primary challenges of evolutionary research is to identify ecological factors that favour reproductive isolation. Therefore, studying partially isolated taxa has the potential to provide novel insight into the mechanisms of evolutionary divergence. Our study utilizes an adaptive colour polymorphism in the arc-eye hawkfish (Paracirrhites arcatus) to explore the evolution of reproductive barriers in the absence of geographic isolation. Dark and light morphs are ecologically partitioned into basaltic and coral microhabitats a few metres apart. To test whether ecological barriers have reduced gene flow among dark and light phenotypes, we evaluated genetic variation at 30 microsatellite loci and a nuclear exon (Mc1r) associated with melanistic coloration. We report low, but significant microsatellite differentiation among colour morphs and stronger divergence in the coding region of Mc1r indicating signatures of selection. Critically, we observed greater genetic divergence between colour morphs on the same reefs than that between the same morphs in different geographic locations. We hypothesize that adaptation to the contrasting microhabitats is overriding gene flow and is responsible for the partial reproductive isolation observed between sympatric colour morphs. Combined with complementary studies of hawkfish ecology and behaviour, these genetic results indicate an ecological barrier to gene flow initiated by habitat selection and enhanced by assortative mating. Hence, the arc-eye hawkfish fulfil theoretical expectations for the earliest phase of speciation with gene flow.
  • Item
    Thumbnail Image
    Spatial Effects on the Multiplicity of Plasmodium falciparum Infections
    Karl, S ; White, MT ; Milne, GJ ; Gurarie, D ; Hay, SI ; Barry, AE ; Felger, I ; Mueller, I ; Marinho, CRF (PUBLIC LIBRARY SCIENCE, 2016-10-06)
    As malaria is being pushed back on many frontiers and global case numbers are declining, accurate measurement and prediction of transmission becomes increasingly difficult. Low transmission settings are characterised by high levels of spatial heterogeneity, which stands in stark contrast to the widely used assumption of spatially homogeneous transmission used in mathematical transmission models for malaria. In the present study an individual-based mathematical malaria transmission model that incorporates multiple parasite clones, variable human exposure and duration of infection, limited mosquito flight distance and most importantly geographically heterogeneous human and mosquito population densities was used to illustrate the differences between homogeneous and heterogeneous transmission assumptions when aiming to predict surrogate indicators of transmission intensity such as population parasite prevalence or multiplicity of infection (MOI). In traditionally highly malaria endemic regions where most of the population harbours malaria parasites, humans are often infected with multiple parasite clones. However, studies have shown also in areas with low overall parasite prevalence, infection with multiple parasite clones is a common occurrence. Mathematical models assuming homogeneous transmission between humans and mosquitoes cannot explain these observations. Heterogeneity of transmission can arise from many factors including acquired immunity, body size and occupational exposure. In this study, we show that spatial heterogeneity has a profound effect on predictions of MOI and parasite prevalence. We illustrate, that models assuming homogeneous transmission underestimate average MOI in low transmission settings when compared to field data and that spatially heterogeneous models predict stable transmission at much lower overall parasite prevalence. Therefore it is very important that models used to guide malaria surveillance and control strategies in low transmission and elimination settings take into account the spatial features of the specific target area, including human and mosquito vector distribution.
  • Item
    Thumbnail Image
    Variation in relapse frequency and the transmission potential of Plasmodium vivax malaria
    White, MT ; Shirreff, G ; Karl, S ; Ghani, AC ; Mueller, I (ROYAL SOC, 2016-03-30)
    There is substantial variation in the relapse frequency of Plasmodium vivax malaria, with fast-relapsing strains in tropical areas, and slow-relapsing strains in temperate areas with seasonal transmission. We hypothesize that much of the phenotypic diversity in P. vivax relapses arises from selection of relapse frequency to optimize transmission potential in a given environment, in a process similar to the virulence trade-off hypothesis. We develop mathematical models of P. vivax transmission and calculate the basic reproduction number R0 to investigate how transmission potential varies with relapse frequency and seasonality. In tropical zones with year-round transmission, transmission potential is optimized at intermediate relapse frequencies of two to three months: slower-relapsing strains increase the opportunity for onward transmission to mosquitoes, but also increase the risk of being outcompeted by faster-relapsing strains. Seasonality is an important driver of relapse frequency for temperate strains, with the time to first relapse predicted to be six to nine months, coinciding with the duration between seasonal transmission peaks. We predict that there is a threshold degree of seasonality, below which fast-relapsing tropical strains are selected for, and above which slow-relapsing temperate strains dominate, providing an explanation for the observed global distribution of relapse phenotypes.
  • Item
    Thumbnail Image
    Synergistic effect of IL-12 and IL-18 induces TIM3 regulation of γδ T cell function and decreases the risk of clinical malaria in children living in Papua New Guinea
    Schofield, L ; Ioannidis, LJ ; Karl, S ; Robinson, LJ ; Tan, QY ; Poole, DP ; Betuela, I ; Hill, DL ; Siba, PM ; Hansen, DS ; Mueller, I ; Eriksson, EM (BIOMED CENTRAL LTD, 2017-06-15)
    BACKGROUND: γδ T cells are important for both protective immunity and immunopathogenesis during malaria infection. However, the immunological processes determining beneficial or detrimental effects on disease outcome remain elusive. The aim of this study was to examine expression and regulatory effect of the inhibitory receptor T-cell immunoglobulin domain and mucin domain 3 (TIM3) on γδ T cells. While TIM3 expression and function on conventional αβ T cells have been clearly defined, the equivalent characterization on γδ T cells and associations with disease outcomes is limited. This study investigated the functional capacity of TIM3+ γδ T cells and the underlying mechanisms contributing to TIM3 upregulation and established an association with malaria disease outcomes. METHODS: We analyzed TIM3 expression on γδ T cells in 132 children aged 5-10 years living in malaria endemic areas of Papua New Guinea. TIM3 upregulation and effector functions of TIM3+ γδ T cells were assessed following in vitro stimulation with parasite-infected erythrocytes, phosphoantigen and/or cytokines. Associations between the proportion of TIM3-expressing cells and the molecular force of infection were tested using negative binomial regression and in a Cox proportional hazards model for time to first clinical episode. Multivariable analyses to determine the association of TIM3 and IL-18 levels were conducted using general linear models. Malaria infection mouse models were utilized to experimentally investigate the relationship between repeated exposure and TIM3 upregulation. RESULTS: This study demonstrates that even in the absence of an active malaria infection, children of malaria endemic areas have an atypical population of TIM3-expressing γδ T cells (mean frequency TIM3+ of total γδ T cells 15.2% ± 12). Crucial factors required for γδ T cell TIM3 upregulation include IL-12/IL-18, and plasma IL-18 was associated with TIM3 expression (P = 0.002). Additionally, we show a relationship between TIM3 expression and infection with distinct parasite clones during repeated exposure. TIM3+ γδ T cells were functionally impaired and were associated with asymptomatic malaria infection (hazard ratio 0.54, P = 0.032). CONCLUSIONS: Collectively our data demonstrate a novel role for IL-12/IL-18 in shaping the innate immune response and provide fundamental insight into aspects of γδ T cell immunoregulation. Furthermore, we show that TIM3 represents an important γδ T cell regulatory component involved in minimizing malaria symptoms.
  • Item
    Thumbnail Image
    The complex relationship of exposure to new Plasmodium infections and incidence of clinical malaria in Papua New Guinea
    Hofmann, NE ; Kari, S ; Wampfler, R ; Kiniboro, B ; Teliki, A ; Iga, J ; Waltmann, A ; Betuela, I ; Felger, I ; Robinson, LJ ; Mueller, I (ELIFE SCIENCES PUBLICATIONS LTD, 2017-09-01)
    UNLABELLED: The molecular force of blood-stage infection (molFOB) is a quantitative surrogate metric for malaria transmission at population level and for exposure at individual level. Relationships between molFOB, parasite prevalence and clinical incidence were assessed in a treatment-to-reinfection cohort, where P.vivax (Pv) hypnozoites were eliminated in half the children by primaquine (PQ). Discounting relapses, children acquired equal numbers of new P. falciparum (Pf) and Pv blood-stage infections/year (Pf-molFOB = 0-18, Pv-molFOB = 0-23) resulting in comparable spatial and temporal patterns in incidence and prevalence of infections. Including relapses, Pv-molFOB increased >3 fold (relative to PQ-treated children) showing greater heterogeneity at individual (Pv-molFOB = 0-36) and village levels. Pf- and Pv-molFOB were strongly associated with clinical episode risk. Yearly Pf clinical incidence rate (IR = 0.28) was higher than for Pv (IR = 0.12) despite lower Pf-molFOB. These relationships between molFOB, clinical incidence and parasite prevalence reveal a comparable decline in Pf and Pv transmission that is normally hidden by the high burden of Pv relapses. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT02143934.
  • Item
    Thumbnail Image
    Effects of liver-stage clearance by Primaquine on gametocyte carriage of Plasmodium vivax and P. falciparum
    Wampfler, R ; Hofmann, NE ; Karl, S ; Betuela, I ; Kinboro, B ; Lorry, L ; Silkey, M ; Robinson, LJ ; Mueller, I ; Felger, I ; Sinnis, P (PUBLIC LIBRARY SCIENCE, 2017-07)
    BACKGROUND: Primaquine (PQ) is the only currently licensed antimalarial that prevents Plasmodium vivax (Pv) relapses. It also clears mature P. falciparum (Pf) gametocytes, thereby reducing post-treatment transmission. Randomized PQ treatment in a treatment-to-reinfection cohort in Papua New Guinean children permitted the study of Pv and Pf gametocyte carriage after radical cure and to investigate the contribution of Pv relapses. METHODS: Children received radical cure with Chloroquine, Artemether-Lumefantrine plus either PQ or placebo. Blood samples were subsequently collected in 2-to 4-weekly intervals over 8 months. Gametocytes were detected by quantitative reverse transcription-PCR targeting pvs25 and pfs25. RESULTS: PQ treatment reduced the incidence of Pv gametocytes by 73%, which was comparable to the effect of PQ on incidence of blood-stage infections. 92% of Pv and 79% of Pf gametocyte-positive infections were asymptomatic. Pv and to a lesser extent Pf gametocyte positivity and density were associated with high blood-stage parasite densities. Multivariate analysis revealed that the odds of gametocytes were significantly reduced in mixed-species infections compared to single-species infections for both species (ORPv = 0.39 [95% CI 0.25-0.62], ORPf = 0.33 [95% CI 0.18-0.60], p<0.001). No difference between the PQ and placebo treatment arms was observed in density of Pv gametocytes or in the proportion of Pv infections that carried gametocytes. First infections after blood-stage and placebo treatment, likely caused by a relapsing hypnozoite, were equally likely to carry gametocytes than first infections after PQ treatment, likely caused by an infective mosquito bite. CONCLUSION: Pv relapses and new infections are associated with similar levels of gametocytaemia. Relapses thus contribute considerably to the Pv reservoir highlighting the importance of effective anti-hypnozoite treatment for efficient control of Pv. TRIAL REGISTRATION: ClinicalTrials.gov NCT02143934.