Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    A three-stage developmental pathway for human Vγ9Vδ2 T cells within the postnatal thymus
    Perriman, L ; Tavakolinia, N ; Jalali, S ; Li, S ; Hickey, PF ; Amann-Zalcenstein, D ; Ho, WWH ; Baldwin, TM ; Piers, AT ; Konstantinov, IE ; Anderson, J ; Stanley, EG ; Licciardi, PV ; Kannourakis, G ; Naik, SH ; Koay, H-F ; Mackay, LK ; Berzins, SP ; Pellicci, DG (AMER ASSOC ADVANCEMENT SCIENCE, 2023-07-14)
    Vγ9Vδ2 T cells are the largest population of γδ T cells in adults and can play important roles in providing effective immunity against cancer and infection. Many studies have suggested that peripheral Vγ9Vδ2 T cells are derived from the fetal liver and thymus and that the postnatal thymus plays little role in the development of these cells. More recent evidence suggested that these cells may also develop postnatally in the thymus. Here, we used high-dimensional flow cytometry, transcriptomic analysis, functional assays, and precursor-product experiments to define the development pathway of Vγ9Vδ2 T cells in the postnatal thymus. We identify three distinct stages of development for Vγ9Vδ2 T cells in the postnatal thymus that are defined by the progressive acquisition of functional potential and major changes in the expression of transcription factors, chemokines, and other surface markers. Furthermore, our analysis of donor-matched thymus and blood revealed that the molecular requirements for the development of functional Vγ9Vδ2 T cells are delivered predominantly by the postnatal thymus and not in the periphery. Tbet and Eomes, which are required for IFN-γ and TNFα expression, are up-regulated as Vγ9Vδ2 T cells mature in the thymus, and mature thymic Vγ9Vδ2 T cells rapidly express high levels of these cytokines after stimulation. Similarly, the postnatal thymus programs Vγ9Vδ2 T cells to express the cytolytic molecules, perforin, granzyme A, and granzyme K. This study provides a greater understanding of how Vγ9Vδ2 T cells develop in humans and may lead to opportunities to manipulate these cells to treat human diseases.
  • Item
    Thumbnail Image
    RIPK3 controls MAIT cell accumulation during development but not during infection
    Patton, T ; Zhao, Z ; Lim, XY ; Eddy, E ; Wang, H ; Nelson, AG ; Ennis, B ; Eckle, SBG ; Souter, MNT ; Pediongco, TJ ; Koay, H-F ; Zhang, J-G ; Djajawi, TM ; Louis, C ; Lalaoui, N ; Jacquelot, N ; Lew, AM ; Pellicci, DG ; McCluskey, J ; Zhan, Y ; Chen, Z ; Lawlor, KE ; Corbett, AJ (SPRINGERNATURE, 2023-02-11)
    Cell death mechanisms in T lymphocytes vary according to their developmental stage, cell subset and activation status. The cell death control mechanisms of mucosal-associated invariant T (MAIT) cells, a specialized T cell population, are largely unknown. Here we report that MAIT cells express key necroptotic machinery; receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) protein, in abundance. Despite this, we discovered that the loss of RIPK3, but not necroptotic effector MLKL or apoptotic caspase-8, specifically increased MAIT cell abundance at steady-state in the thymus, spleen, liver and lungs, in a cell-intrinsic manner. In contrast, over the course of infection with Francisella tularensis, RIPK3 deficiency did not impact the magnitude of the expansion nor contraction of MAIT cell pools. These findings suggest that, distinct from conventional T cells, the accumulation of MAIT cells is restrained by RIPK3 signalling, likely prior to thymic egress, in a manner independent of canonical apoptotic and necroptotic cell death pathways.
  • Item
    Thumbnail Image
    MAIT cells regulate NK cell-mediated tumor immunity
    Petley, E ; Koay, H-F ; Henderson, MA ; Sek, K ; Todd, KL ; Keam, SP ; Lai, J ; House, IG ; Li, J ; Zethoven, M ; Chen, AXY ; Oliver, AJ ; Michie, J ; Freeman, AJ ; Giuffrida, L ; Chan, JD ; Pizzolla, A ; Mak, JYW ; McCulloch, TR ; Souza-Fonseca-Guimaraes, F ; Kearney, CJ ; Millen, R ; Ramsay, RG ; Huntington, ND ; McCluskey, J ; Oliaro, J ; Fairlie, DP ; Neeson, PJ ; Godfrey, D ; Beavis, PA ; Darcy, PK (NATURE PORTFOLIO, 2021-08-06)
    The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.