Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    Intermittent Preventive Therapy in Pregnancy and Incidence of Low Birth Weight in Malaria-Endemic Countries
    Cates, JE ; Westreich, D ; Unger, HW ; Bauserman, M ; Adair, L ; Cole, SR ; Meshnick, S ; Rogerson, SJ (AMER PUBLIC HEALTH ASSOC INC, 2018-03)
    OBJECTIVES: To estimate the impact of hypothetical antimalarial and nutritional interventions (which reduce the prevalence of low midupper arm circumference [MUAC]) on the incidence of low birth weight (LBW). METHODS: We analyzed data from 14 633 pregnancies from 13 studies conducted across Africa and the Western Pacific from 1996 to 2015. We calculated population intervention effects for increasing intermittent preventive therapy in pregnancy (IPTp), full coverage with bed nets, reduction in malaria infection at delivery, and reductions in the prevalence of low MUAC. RESULTS: We estimated that, compared with observed IPTp use, administering 3 or more doses of IPTp to all women would decrease the incidence of LBW from 9.9% to 6.9% (risk difference = 3.0%; 95% confidence interval = 1.7%, 4.0%). The intervention effects for eliminating malaria at delivery, increasing bed net ownership, and decreasing low MUAC prevalence were all modest. CONCLUSIONS: Increasing IPTp uptake to at least 3 doses could decrease the incidence of LBW in malaria-endemic countries. The impact of IPTp on LBW was greater than the effect of prevention of malaria, consistent with a nonmalarial effect of IPTp, measurement error, or selection bias.
  • Item
    Thumbnail Image
    Sulphadoxine-pyrimethamine plus azithromycin may improve birth outcomes through impacts on inflammation and placental angiogenesis independent of malarial infection
    Unger, HW ; Hansa, AP ; Buffet, C ; Hasang, W ; Teo, A ; Randall, L ; Ome-Kaius, M ; Karl, S ; Anuan, AA ; Beeson, JG ; Mueller, I ; Stock, SJ ; Rogerson, SJ (NATURE PORTFOLIO, 2019-02-19)
    Intermittent preventive treatment with sulphadoxine-pyrimethamine (SP) and SP plus azithromycin (SPAZ) reduces low birthweight (<2,500 g) in women without malarial and reproductive tract infections. This study investigates the impact of SPAZ on associations between plasma biomarkers of inflammation and angiogenesis and adverse pregnancy outcomes in 2,012 Papua New Guinean women. Concentrations of C-reactive protein (CRP), α-1-acid glycoprotein (AGP), soluble endoglin (sEng), soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) were measured at enrolment and delivery in a trial comparing SPAZ to SP plus chloroquine (SPCQ). At antenatal enrolment higher CRP (adjusted odds ratio 1.52; 95% confidence interval [CI] 1.03-2.25), sEng (4.35; 1.77, 10.7) and sFlt1 (2.21; 1.09, 4.48) were associated with preterm birth, and higher sEng with low birthweight (1.39; 1.11,3.37), in SPCQ recipients only. Increased enrolment sFlt1:PlGF ratios associated with LBW in all women (1.46; 1.11, 1.90). At delivery, higher AGP levels were strongly associated with low birthweight, preterm birth and small-for-gestational age babies in the SPCQ arm only. Restricting analyses to women without malaria infection did not materially alter these relationships. Women receiving SPAZ had lower delivery AGP and CRP levels (p < 0.001). SPAZ may protect against adverse pregnancy outcomes by reducing inflammation and preventing its deleterious consequences, including dysregulation of placental angiogenesis, in women with and without malarial infection.
  • Item
    Thumbnail Image
    Microscopic and submicroscopic Plasmodium falciparum infection, maternal anaemia and adverse pregnancy outcomes in Papua New Guinea: a cohort study
    Unger, HW ; Rosanas-Urgell, A ; Robinson, LJ ; Ome-Kaius, M ; Jally, S ; Umbers, AJ ; Pomat, W ; Mueller, I ; Kattenberg, E ; Rogerson, SJ (BMC, 2019-09-02)
    BACKGROUND: Infection during pregnancy with Plasmodium falciparum is associated with maternal anaemia and adverse birth outcomes including low birth weight (LBW). Studies using polymerase chain reaction (PCR) techniques indicate that at least half of all infections in maternal venous blood are missed by light microscopy or rapid diagnostic tests. The impact of these subpatent infections on maternal and birth outcomes remains unclear. METHODS: In a cohort of women co-enrolled in a clinical trial of intermittent treatment with sulfadoxine-pyrimethamine (SP) plus azithromycin for the prevention of LBW (< 2500 g) in Papua New Guinea (PNG), P. falciparum infection status at antenatal enrolment and delivery was assessed by routine light microscopy and real-time quantitative PCR. The impact of infection status at enrolment and delivery on adverse birth outcomes and maternal haemoglobin at delivery was assessed using logistic and linear regression models adjusting for potential confounders. Together with insecticide-treated bed nets, women had received up to 3 monthly intermittent preventive treatments with SP plus azithromycin or a single clearance treatment with SP plus chloroquine. RESULTS: A total of 9.8% (214/2190) of women had P. falciparum (mono-infection or mixed infection with Plasmodium vivax) detected in venous blood at antenatal enrolment at 14-26 weeks' gestation. 4.7% of women had microscopic, and 5.1% submicroscopic P. falciparum infection. At delivery (n = 1936), 1.5% and 2.0% of women had submicroscopic and microscopic P. falciparum detected in peripheral blood, respectively. Submicroscopic P. falciparum infections at enrolment or at delivery in peripheral or placental blood were not associated with maternal anaemia or adverse birth outcomes such as LBW. Microscopic P. falciparum infection at antenatal enrolment was associated with anaemia at delivery (adjusted odds ratio [aOR] 2.00, 95% confidence interval [CI] 1.09, 3.67; P = 0.025). Peripheral microscopic P. falciparum infection at delivery was associated with LBW (aOR 2.75, 95% CI 1.27; 5.94, P = 0.010) and preterm birth (aOR 6.58, 95% CI 2.46, 17.62; P < 0.001). CONCLUSIONS: A substantial proportion of P. falciparum infections in pregnant women in PNG were submicroscopic. Microscopic, but not submicroscopic, infections were associated with adverse outcomes in women receiving malaria preventive treatment and insecticide-treated bed nets. Current malaria prevention policies that combine insecticide-treated bed nets, intermittent preventive treatment and prompt treatment of symptomatic infections appear to be appropriate for the management of malaria in pregnancy in settings like PNG.
  • Item
    Thumbnail Image
    Risk factors and pregnancy outcomes associated with placental malaria in a prospective cohort of Papua New Guinean women
    Lufele, E ; Umbers, A ; Ordi, J ; Ome-Kaius, M ; Wangnapi, R ; Unger, H ; Tarongka, N ; Siba, P ; Mueller, I ; Robinson, L ; Rogerson, S (BIOMED CENTRAL LTD, 2017-10-24)
    BACKGROUND: Plasmodium falciparum in pregnancy results in substantial poor health outcomes for both mother and child, particularly in young, primigravid mothers who are at greatest risk of placental malaria (PM) infection. Complications of PM include maternal anaemia, low birth weight and preterm delivery, which contribute to maternal and infant morbidity and mortality in coastal Papua New Guinea (PNG). METHODS: Placental biopsies were examined from 1451 pregnant women who were enrolled in a malaria prevention study at 14-26 weeks gestation. Clinical and demographic information were collected at first antenatal clinic visits and women were followed until delivery. Placental biopsies were collected and examined for PM using histology. The presence of infected erythrocytes and/or the malaria pigment in monocytes or fibrin was used to determine the type of placental infection. RESULTS: Of 1451 placentas examined, PM infection was detected in 269 (18.5%), of which 54 (3.7%) were acute, 55 (3.8%) chronic, and 160 (11.0%) were past infections. Risk factors for PM included residing in rural areas (adjusted odds ratio (AOR) 3.65, 95% CI 1.76-7.51; p ≤ 0.001), being primigravid (AOR 2.45, 95% CI 1.26-4.77; p = 0.008) and having symptomatic malaria during pregnancy (AOR 2.05, 95% CI 1.16-3.62; p = 0.013). After adjustment for covariates, compared to uninfected women, acute infections (AOR 1.97, 95% CI 0.98-3.95; p = 0.056) were associated with low birth weight babies, whereas chronic infections were associated with preterm delivery (AOR 3.92, 95% CI 1.64-9.38; p = 0.002) and anaemia (AOR 2.22, 95% CI 1.02-4.84; p = 0.045). CONCLUSIONS: Among pregnant PNG women receiving at least one dose of intermittent preventive treatment in pregnancy and using insecticide-treated bed nets, active PM infections were associated with adverse outcomes. Improved malaria prevention is required to optimize pregnancy outcomes.
  • Item
    Thumbnail Image
    Malaria, malnutrition, and birthweight: A meta-analysis using individual participant data
    Cates, JE ; Unger, HW ; Briand, V ; Fievet, N ; Valea, I ; Tinto, H ; D'Alessandro, U ; Landis, SH ; Adu-Afarwuah, S ; Dewey, KG ; Ter Kuile, FO ; Desai, M ; Dellicour, S ; Ouma, P ; Gutman, J ; Oneko, M ; Slutsker, L ; Terlouw, DJ ; Kariuki, S ; Ayisi, J ; Madanitsa, M ; Mwapasa, V ; Ashorn, P ; Maleta, K ; Mueller, I ; Stanisic, D ; Schmiegelow, C ; Lusingu, JPA ; van Eijk, AM ; Bauserman, M ; Adair, L ; Cole, SR ; Westreich, D ; Meshnick, S ; Rogerson, S ; von Seidlein, L (PUBLIC LIBRARY SCIENCE, 2017-08)
    BACKGROUND: Four studies previously indicated that the effect of malaria infection during pregnancy on the risk of low birthweight (LBW; <2,500 g) may depend upon maternal nutritional status. We investigated this dependence further using a large, diverse study population. METHODS AND FINDINGS: We evaluated the interaction between maternal malaria infection and maternal anthropometric status on the risk of LBW using pooled data from 14,633 pregnancies from 13 studies (6 cohort studies and 7 randomized controlled trials) conducted in Africa and the Western Pacific from 1996-2015. Studies were identified by the Maternal Malaria and Malnutrition (M3) initiative using a convenience sampling approach and were eligible for pooling given adequate ethical approval and availability of essential variables. Study-specific adjusted effect estimates were calculated using inverse probability of treatment-weighted linear and log-binomial regression models and pooled using a random-effects model. The adjusted risk of delivering a baby with LBW was 8.8% among women with malaria infection at antenatal enrollment compared to 7.7% among uninfected women (adjusted risk ratio [aRR] 1.14 [95% confidence interval (CI): 0.91, 1.42]; N = 13,613), 10.5% among women with malaria infection at delivery compared to 7.9% among uninfected women (aRR 1.32 [95% CI: 1.08, 1.62]; N = 11,826), and 15.3% among women with low mid-upper arm circumference (MUAC <23 cm) at enrollment compared to 9.5% among women with MUAC ≥ 23 cm (aRR 1.60 [95% CI: 1.36, 1.87]; N = 9,008). The risk of delivering a baby with LBW was 17.8% among women with both malaria infection and low MUAC at enrollment compared to 8.4% among uninfected women with MUAC ≥ 23 cm (joint aRR 2.13 [95% CI: 1.21, 3.73]; N = 8,152). There was no evidence of synergism (i.e., excess risk due to interaction) between malaria infection and MUAC on the multiplicative (p = 0.5) or additive scale (p = 0.9). Results were similar using body mass index (BMI) as an anthropometric indicator of nutritional status. Meta-regression results indicated that there may be multiplicative interaction between malaria infection at enrollment and low MUAC within studies conducted in Africa; however, this finding was not consistent on the additive scale, when accounting for multiple comparisons, or when using other definitions of malaria and malnutrition. The major limitations of the study included availability of only 2 cross-sectional measurements of malaria and the limited availability of ultrasound-based pregnancy dating to assess impacts on preterm birth and fetal growth in all studies. CONCLUSIONS: Pregnant women with malnutrition and malaria infection are at increased risk of LBW compared to women with only 1 risk factor or none, but malaria and malnutrition do not act synergistically.
  • Item
    Thumbnail Image
    Effects of Plasmodium falciparum infection on umbilical artery resistance and intrafetal blood flow distribution: a Doppler ultrasound study from Papua New Guinea
    Ome-Kaius, M ; Karl, S ; Wangnapi, RA ; Bolnga, JW ; Mola, G ; Walker, J ; Mueller, I ; Unger, HW ; Rogerson, SJ (BMC, 2017-01-19)
    BACKGROUND: Doppler velocimetry studies of umbilical artery (UA) and middle cerebral artery (MCA) flow help to determine the presence and severity of fetal growth restriction. Increased UA resistance and reduced MCA pulsatility may indicate increased placental resistance and intrafetal blood flow redistribution. Malaria causes low birth weight and fetal growth restriction, but few studies have assessed its effects on uteroplacental and fetoplacental blood flow. METHODS: Colour-pulsed Doppler ultrasound was used to assess UA and MCA flow in 396 Papua New Guinean singleton fetuses. Abnormal flow was defined as an UA resistance index above the 90th centile, and/or a MCA pulsatility index and cerebroplacental ratio (ratio of MCA and UA pulsatility index) below the 10th centile of population-specific models fitted to the data. Associations between malaria (peripheral infection prior to and at ultrasound examination, and any gestational infection, i.e., 'exposure') and abnormal flow, and between abnormal flow and birth outcomes, were estimated. RESULTS: Of 78 malaria infection episodes detected before or at the ultrasound visit, 62 (79.5%) were Plasmodium falciparum (34 sub-microscopic infections), and 16 were Plasmodium vivax. Plasmodium falciparum infection before or at Doppler measurement was associated with increased UA resistance (adjusted odds ratio (aOR) 2.3 95% CI 1.0-5.2, P = 0.047). When assessed by 'exposure', P. falciparum infection was significantly associated with increased UA resistance (all infections: 2.4, 1.1-4.9, P = 0.024; sub-microscopic infections 2.6, 1.0-6.6, P = 0.051) and a reduced MCA pulsatility index (all infections: 2.6, 1.2-5.3, P = 0.012; sub-microscopic infections: 2.8, 1.1-7.5, P = 0.035). Sub-microscopic P. falciparum infections were additionally associated with a reduced cerebroplacental ratio (3.64, 1.22-10.88, P = 0.021). There were too few P. vivax infections to draw robust conclusions. An increased UA resistance index was associated with histological evidence of placental malaria (5.1, 2.3-10.9, P < 0.001; sensitivity 0.26, specificity 0.93). A low cerebroplacental Doppler ratio was associated with concurrently measuring small-for-gestational-age, and with low birth weight. DISCUSSION/CONCLUSION: Both microscopic and sub-microscopic P. falciparum infections impair fetoplacental and intrafetal flow, at least temporarily. Increased UA resistance has high specificity but low sensitivity for the detection of placental infection. These findings suggest that interventions to protect the fetus should clear and prevent both microscopic and sub-microscopic malarial infections. Trial Registration ClinicalTrials.gov NCT01136850. Registered 06 April 2010.
  • Item
    Thumbnail Image
    Maternal Malaria and Malnutrition (M3) initiative, a pooled birth cohort of 13 pregnancy studies in Africa and the Western Pacific
    Unger, HW ; Cates, JE ; Gutman, J ; Briand, V ; Fievet, N ; Valea, I ; Tinto, H ; d'Alessandro, U ; Landis, SH ; Adu-Afarwuah, S ; Dewey, KG ; Ter Kuile, F ; Dellicour, S ; Ouma, P ; Slutsker, L ; Terlouw, DJ ; Kariuki, S ; Ayisi, J ; Nahlen, B ; Desai, M ; Madanitsa, M ; Kalilani-Phiri, L ; Ashorn, P ; Maleta, K ; Mueller, I ; Stanisic, D ; Schmiegelow, C ; Lusingu, J ; Westreich, D ; van Eijk, AM ; Meshnick, S ; Rogerson, S (BMJ PUBLISHING GROUP, 2016)
    PURPOSE: The Maternal Malaria and Malnutrition (M3) initiative has pooled together 13 studies with the hope of improving understanding of malaria-nutrition interactions during pregnancy and to foster collaboration between nutritionists and malariologists. PARTICIPANTS: Data were pooled on 14 635 singleton, live birth pregnancies from women who had participated in 1 of 13 pregnancy studies. The 13 studies cover 8 countries in Africa and Papua New Guinea in the Western Pacific conducted from 1996 to 2015. FINDINGS TO DATE: Data are available at the time of antenatal enrolment of women into their respective parent study and at delivery. The data set comprises essential data such as malaria infection status, anthropometric assessments of maternal nutritional status, presence of anaemia and birth weight, as well as additional variables such gestational age at delivery for a subset of women. Participating studies are described in detail with regard to setting and primary outcome measures, and summarised data are available from each contributing cohort. FUTURE PLANS: This pooled birth cohort is the largest pregnancy data set to date to permit a more definite evaluation of the impact of plausible interactions between poor nutritional status and malaria infection in pregnant women on fetal growth and gestational length. Given the current comparative lack of large pregnancy cohorts in malaria-endemic settings, compilation of suitable pregnancy cohorts is likely to provide adequate statistical power to assess malaria-nutrition interactions, and could point towards settings where such interactions are most relevant. The M3 cohort may thus help to identify pregnant women at high risk of adverse outcomes who may benefit from tailored intensive antenatal care including nutritional supplements and alternative or intensified malaria prevention regimens, and the settings in which these interventions would be most effective.
  • Item
    No Preview Available
    Impact of Intermittent Preventive Treatment in Pregnancy with Azithromycin-Containing Regimens on Maternal Nasopharyngeal Carriage and Antibiotic Sensitivity of Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus: a Cross-Sectional Survey at Delivery
    Unger, HW ; Aho, C ; Ome-Kaius, M ; Wangnapi, RA ; Umbers, AJ ; Jack, W ; Lafana, A ; Michael, A ; Hanieh, S ; Siba, P ; Mueller, I ; Greenhill, AR ; Rogerson, SJ ; Ledeboer, NA (AMER SOC MICROBIOLOGY, 2015-04)
    Sulfadoxine-pyrimethamine (SP) plus azithromycin (AZ) (SPAZ) has the potential for intermittent preventive treatment of malaria in pregnancy (IPTp), but its use could increase circulation of antibiotic-resistant bacteria associated with severe pediatric infections. We evaluated the effect of monthly SPAZ-IPTp compared to a single course of SP plus chloroquine (SPCQ) on maternal nasopharyngeal carriage and antibiotic susceptibility of Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus at delivery among 854 women participating in a randomized controlled trial in Papua New Guinea. Serotyping was performed, and antibiotic susceptibility was evaluated by disk diffusion and Etest. Potential risk factors for carriage were examined. Nasopharyngeal carriage at delivery of S. pneumoniae (SPAZ, 7.2% [30/418], versus SPCQ, 19.3% [84/436]; P<0.001) and H. influenzae (2.9% [12/418] versus 6.0% [26/436], P=0.028), but not S. aureus, was significantly reduced among women who had received SPAZ-IPTp. The number of macrolide-resistant pneumococcal isolates was small but increased in the SPAZ group (13.3% [4/30], versus SPCQ, 2.2% [2/91]; P=0.033). The proportions of isolates with serotypes covered by the 13-valent pneumococcal conjugate vaccine were similar (SPAZ, 10.3% [3/29], versus SPCQ, 17.6% [16/91]; P=0.352). Although macrolide-resistant isolates were rare, they were more commonly detected in women who had received SPAZ-IPTp, despite the significant reduction of maternal carriage of S. pneumoniae and H. influenzae observed in this group. Future studies on SPAZ-IPTp should evaluate carriage and persistence of macrolide-resistant S. pneumoniae and other pathogenic bacteria in both mothers and infants and assess the clinical significance of their circulation.
  • Item
    Thumbnail Image
    Does Malaria Affect Placental Development? Evidence from In Vitro Models
    Umbers, AJ ; Stanisic, DI ; Ome, M ; Wangnapi, R ; Hanieh, S ; Unger, HW ; Robinson, LJ ; Lufele, E ; Baiwog, F ; Siba, PM ; King, CL ; Beeson, JG ; Mueller, I ; Aplin, JD ; Glazier, JD ; Rogerson, SJ ; Hviid, L (PUBLIC LIBRARY SCIENCE, 2013-01-31)
    BACKGROUND: Malaria in early pregnancy is difficult to study but has recently been associated with fetal growth restriction (FGR). The pathogenic mechanisms underlying malarial FGR are poorly characterized, but may include impaired placental development. We used in vitro methods that model migration and invasion of placental trophoblast into the uterine wall to investigate whether soluble factors released into maternal blood in malaria infection might impair placental development. Because trophoblast invasion is enhanced by a number of hormones and chemokines, and is inhibited by pro-inflammatory cytokines, many of which are dysregulated in malaria in pregnancy, we further compared concentrations of these factors in blood between malaria-infected and uninfected pregnancies. METHODOLOGY/PRINCIPAL FINDINGS: We measured trophoblast invasion, migration and viability in response to treatment with serum or plasma from two independent cohorts of Papua New Guinean women infected with Plasmodium falciparum or Plasmodium vivax in early pregnancy. Compared to uninfected women, serum and plasma from women with P. falciparum reduced trophoblast invasion (P = .06) and migration (P = .004). P. vivax infection did not alter trophoblast migration (P = .64). The P. falciparum-specific negative effect on placental development was independent of trophoblast viability, but associated with high-density infections. Serum from P. falciparum infected women tended to have lower levels of trophoblast invasion promoting hormones and factors and higher levels of invasion-inhibitory inflammatory factors. CONCLUSION/SIGNIFICANCE: We demonstrate that in vitro models of placental development can be adapted to indirectly study the impact of malaria in early pregnancy. These infections could result in impaired trophoblast invasion with reduced transformation of maternal spiral arteries due to maternal hormonal and inflammatory disturbances, which may contribute to FGR by limiting the delivery of maternal blood to the placenta. Future prevention strategies for malaria in pregnancy should include protection in the first half of pregnancy.
  • Item
    Thumbnail Image
    Accuracy of an HRP-2/panLDH rapid diagnostic test to detect peripheral and placental Plasmodium falciparum infection in Papua New Guinean women with anaemia or suspected malaria
    Umbers, AJ ; Unger, HW ; Rosanas-Urgell, A ; Wangnapi, RA ; Kattenberg, JH ; Jally, S ; Silim, S ; Lufele, E ; Karl, S ; Ome-Kaius, M ; Robinson, LJ ; Rogerson, SJ ; Mueller, I (BMC, 2015-10-19)
    BACKGROUND: The diagnosis of malaria during pregnancy is complicated by placental sequestration, asymptomatic infection, and low-density peripheral parasitaemia. Where intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine is threatened by drug resistance, or is inappropriate due to low transmission, intermittent screening and treatment (ISTp) with rapid diagnostic tests for malaria (RDT) could be a valuable alternative. Therefore, the accuracy of RDTs to detect peripheral and placental infection was assessed in a declining transmission setting in Papua New Guinea (PNG). METHODS: The performance of a combination RDT detecting histidine-rich protein-2 (HRP-2) and Plasmodium lactate dehydrogenase (pLDH), and light microscopy (LM), to diagnose peripheral Plasmodium falciparum and Plasmodium vivax infections during pregnancy, were assessed using quantitative real-time PCR (qPCR) as the reference standard. Participants in a malaria prevention trial in PNG with a haemoglobin ≤90 g/L, or symptoms suggestive of malaria, were tested. Ability of RDT and LM to detect active placental infection on histology was evaluated in some participants. RESULTS: Among 876 women, 1162 RDTs were undertaken (anaemia: 854 [73.5 %], suspected malaria: 308 [26.5 %]). qPCR detected peripheral infection during 190 RDT episodes (165 P. falciparum, 19 P. vivax, 6 mixed infections). Overall, RDT detected peripheral P. falciparum infection with 45.6 % sensitivity (95 % CI 38.0-53.4), a specificity of 96.4 % (95.0-97.4), a positive predictive value of 68.4 % (59.1-76.8), and a negative predictive value of 91.1 % (89.2-92.8). RDT performance to detect P. falciparum was inferior to LM, more so amongst anaemic women (18.6 vs 45.3 % sensitivity, Liddell's exact test, P < 0.001) compared to symptomatic women (72.9 vs 82.4 % sensitivity, P = 0.077). RDT and LM missed 88.0 % (22/25) and 76.0 % (19/25) of P. vivax infections, respectively. In a subset of women tested at delivery and who had placental histology (n = 158) active placental infection was present in 19.6 %: all three peripheral blood infection detection methods (RDT, LM, qPCR) missed >50 % of these infections. CONCLUSIONS: In PNG, HRP-2/pLDH RDTs may be useful to diagnose peripheral P. falciparum infections in symptomatic pregnant women. However, they are not sufficiently sensitive for use in intermittent screening amongst asymptomatic (anaemic) women. These findings have implications for the management of malaria in pregnancy. The adverse impact of infections undetected by RDT or LM on pregnancy outcomes needs further evaluation.