Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    No Preview Available
    Antibody to Plasmodium falciparum Variant Surface Antigens, var Gene Transcription, and ABO Blood Group in Children With Severe or Uncomplicated Malaria
    Barua, P ; Duffy, MF ; Manning, L ; Laman, M ; Davis, TME ; Mueller, I ; Haghiri, A ; Simpson, JA ; Beeson, JG ; Rogerson, SJ (OXFORD UNIV PRESS INC, 2023-10-18)
    BACKGROUND: Antibodies to variant surface antigens (VSAs) such as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) may vary with malaria severity. The influence of ABO blood group on antibody development is not understood. METHODS: Immunoglobulin G antibodies to VSAs in Papua New Guinean children with severe (n = 41) or uncomplicated (n = 30) malaria were measured by flow cytometry using homologous P falciparum isolates. Isolates were incubated with ABO-matched homologous and heterologous acute and convalescent plasma. RNA was used to assess var gene transcription. RESULTS: Antibodies to homologous, but not heterologous, isolates were boosted in convalescence. The relationship between antibody and severity varied by blood group. Antibodies to VSAs were similar in severe and uncomplicated malaria at presentation, higher in severe than uncomplicated malaria in convalescence, and higher in children with blood group O than other children. Six var gene transcripts best distinguished severe from uncomplicated malaria, including UpsA and 2 CIDRα1 domains. CONCLUSIONS: ABO blood group may influence antibody acquisition to VSAs and susceptibility to severe malaria. Children in Papua New Guinea showed little evidence of acquisition of cross-reactive antibodies following malaria. Var gene transcripts in Papua New Guinean children with severe malaria were similar to those reported from Africa.
  • Item
    No Preview Available
    Efficacy and safety of moxidectin against strongyloidiasis
    Luvira, V ; Watthanakulpanich, D (ELSEVIER SCI LTD, 2024-02)
    BACKGROUND: Primaquine is used to eliminate Plasmodium vivax hypnozoites, but its optimal dosing regimen remains unclear. We undertook a systematic review and individual patient data meta-analysis to investigate the efficacy and tolerability of different primaquine dosing regimens to prevent P vivax recurrence. METHODS: For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, and if they included a treatment group with daily primaquine given over multiple days, where primaquine was commenced within 7 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine). We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. We assessed the effects of total dose and duration of primaquine regimens on the rate of first P vivax recurrence between day 7 and day 180 by Cox's proportional hazards regression (efficacy analysis). The effect of primaquine daily dose on gastrointestinal symptoms on days 5-7 was assessed by modified Poisson regression (tolerability analysis). The study was registered with PROSPERO, CRD42019154470. FINDINGS: Of 226 identified studies, 23 studies with patient-level data from 6879 patients from 16 countries were included in the efficacy analysis. At day 180, the risk of recurrence was 51·0% (95% CI 48·2-53·9) in 1470 patients treated without primaquine, 19·3% (16·9-21·9) in 2569 patients treated with a low total dose of primaquine (approximately 3·5 mg/kg), and 8·1% (7·0-9·4) in 2811 patients treated with a high total dose of primaquine (approximately 7 mg/kg), regardless of primaquine treatment duration. Compared with treatment without primaquine, the rate of P vivax recurrence was lower after treatment with low-dose primaquine (adjusted hazard ratio 0·21, 95% CI 0·17-0·27; p<0·0001) and high-dose primaquine (0·10, 0·08-0·12; p<0·0001). High-dose primaquine had greater efficacy than low-dose primaquine in regions with high and low relapse periodicity (ie, the time from initial infection to vivax relapse). 16 studies with patient-level data from 5609 patients from ten countries were included in the tolerability analysis. Gastrointestinal symptoms on days 5-7 were reported by 4·0% (95% CI 0·0-8·7) of 893 patients treated without primaquine, 6·2% (0·5-12·0) of 737 patients treated with a low daily dose of primaquine (approximately 0·25 mg/kg per day), 5·9% (1·8-10·1) of 1123 patients treated with an intermediate daily dose (approximately 0·5 mg/kg per day) and 10·9% (5·7-16·1) of 1178 patients treated with a high daily dose (approximately 1 mg/kg per day). 20 of 23 studies included in the efficacy analysis and 15 of 16 in the tolerability analysis had a low or unclear risk of bias. INTERPRETATION: Increasing the total dose of primaquine from 3·5 mg/kg to 7 mg/kg can reduce P vivax recurrences by more than 50% in most endemic regions, with a small associated increase in gastrointestinal symptoms. FUNDING: Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.
  • Item
    Thumbnail Image
    Antibody Targets on the Surface of Plasmodium falciparum-Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children
    Chan, J-A ; Boyle, MJ ; Moore, KA ; Reiling, L ; Lin, Z ; Hasang, W ; Avril, M ; Manning, L ; Mueller, I ; Laman, M ; Davis, T ; Smith, JD ; Rogerson, SJ ; Simpson, JA ; Fowkes, FJI ; Beeson, JG (Oxford University Press, 2019-03-01)
    BACKGROUND: Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature contributes to pathogenesis of severe malaria in children. This mechanism is mediated by antigens expressed on the IE surface. However, knowledge of specific targets and functions of antibodies to IE surface antigens that protect against severe malaria is limited. METHODS: Antibodies to IE surface antigens were examined in a case-control study of young children in Papua New Guinea presenting with severe or uncomplicated malaria (n = 448), using isolates with a virulent phenotype associated with severe malaria, and functional opsonic phagocytosis assays. We used genetically modified isolates and recombinant P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains to quantify PfEMP1 as a target of antibodies associated with disease severity. RESULTS: Antibodies to the IE surface and recombinant PfEMP1 domains were significantly higher in uncomplicated vs severe malaria and were boosted following infection. The use of genetically modified P. falciparum revealed that PfEMP1 was a major target of antibodies and that PfEMP1-specific antibodies were associated with reduced odds of severe malaria. Furthermore, antibodies promoting the opsonic phagocytosis of IEs by monocytes were lower in those with severe malaria. CONCLUSIONS: Findings suggest that PfEMP1 is a dominant target of antibodies associated with reduced risk of severe malaria, and function in part by promoting opsonic phagocytosis.
  • Item
    No Preview Available
    The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis
    Commons, RJ ; Simpson, JA ; Thriemer, K ; Abreha, T ; Adam, I ; Anstey, NM ; Assefa, A ; Awab, GR ; Baird, JK ; Barber, BE ; Chu, CS ; Dahal, P ; Daher, A ; Davis, TME ; Dondorp, AM ; Grigg, MJ ; Humphreys, GS ; Hwang, J ; Karunajeewa, H ; Laman, M ; Lidia, K ; Moore, BR ; Mueller, I ; Nosten, F ; Pasaribu, AP ; Pereira, DB ; Phyo, AP ; Poespoprodjo, JR ; Sibley, CH ; Stepniewska, K ; Sutanto, I ; Thwaites, G ; Hien, TT ; White, NJ ; William, T ; Woodrow, CJ ; Guerin, PJ ; Price, RN ; Menendez, C (PUBLIC LIBRARY SCIENCE, 2019-10)
    BACKGROUND: Artemisinin-based combination therapy (ACT) is recommended for uncomplicated Plasmodium vivax malaria in areas of emerging chloroquine resistance. We undertook a systematic review and individual patient data meta-analysis to compare the efficacies of dihydroartemisinin-piperaquine (DP) and artemether-lumefantrine (AL) with or without primaquine (PQ) on the risk of recurrent P. vivax. METHODS AND FINDINGS: Clinical efficacy studies of uncomplicated P. vivax treated with DP or AL and published between January 1, 2000, and January 31, 2018, were identified by conducting a systematic review registered with the International Prospective Register of Systematic Reviews (PROSPERO): CRD42016053310. Investigators of eligible studies were invited to contribute individual patient data that were pooled using standardised methodology. The effect of mg/kg dose of piperaquine/lumefantrine, ACT administered, and PQ on the rate of P. vivax recurrence between days 7 and 42 after starting treatment were investigated by Cox regression analyses according to an a priori analysis plan. Secondary outcomes were the risk of recurrence assessed on days 28 and 63. Nineteen studies enrolling 2,017 patients were included in the analysis. The risk of recurrent P. vivax at day 42 was significantly higher in the 384 patients treated with AL alone (44.0%, 95% confidence interval [CI] 38.7-49.8) compared with the 812 patients treated with DP alone (9.3%, 95% CI 7.1-12.2): adjusted hazard ratio (AHR) 12.63 (95% CI 6.40-24.92), p < 0.001. The rates of recurrence assessed at days 42 and 63 were associated inversely with the dose of piperaquine: AHRs (95% CI) for every 5-mg/kg increase 0.63 (0.48-0.84), p = 0.0013 and 0.83 (0.73-0.94), p = 0.0033, respectively. The dose of lumefantrine was not significantly associated with the rate of recurrence (1.07 for every 5-mg/kg increase, 95% CI 0.99-1.16, p = 0.0869). In a post hoc analysis, in patients with symptomatic recurrence after AL, the mean haemoglobin increased 0.13 g/dL (95% CI 0.01-0.26) for every 5 days that recurrence was delayed, p = 0.0407. Coadministration of PQ reduced substantially the rate of recurrence assessed at day 42 after AL (AHR = 0.20, 95% CI 0.10-0.41, p < 0.001) and at day 63 after DP (AHR = 0.08, 95% CI 0.01-0.70, p = 0.0233). Results were limited by follow-up of patients to 63 days or less and nonrandomised treatment groups. CONCLUSIONS: In this study, we observed the risk of P. vivax recurrence at day 42 to be significantly lower following treatment with DP compared with AL, reflecting the longer period of post-treatment prophylaxis; this risk was reduced substantially by coadministration with PQ. We found that delaying P. vivax recurrence was associated with a small but significant improvement in haemoglobin. These results highlight the benefits of PQ radical cure and also the provision of blood-stage antimalarial agents with prolonged post-treatment prophylaxis.
  • Item
    No Preview Available
    The risk of Plasmodium vivax parasitaemia after P. falciparum malaria: An individual patient data meta-analysis from the WorldWide Antimalarial Resistance Network
    Hossain, MS ; Commons, RJ ; Douglas, NM ; Thriemer, K ; Alemayehu, BH ; Amaratunga, C ; Anvikar, AR ; Ashley, EA ; Asih, PBS ; Carrara, VI ; Lon, C ; D'Alessandro, U ; Davis, TME ; Dondorp, AM ; Edstein, MD ; Fairhurst, RM ; Ferreira, MU ; Hwang, J ; Janssens, B ; Karunajeewa, H ; Kiechel, JR ; Ladeia-Andrade, S ; Laman, M ; Mayxay, M ; McGready, R ; Moore, BR ; Mueller, I ; Newton, PN ; Thuy-Nhien, NT ; Noedl, H ; Nosten, F ; Phyo, AP ; Poespoprodjo, JR ; Saunders, DL ; Smithuis, F ; Spring, MD ; Stepniewska, K ; Suon, S ; Suputtamongkol, Y ; Syafruddin, D ; Tran, HT ; Valecha, N ; Van Herp, M ; Van Vugt, M ; White, NJ ; Guerin, PJ ; Simpson, JA ; Price, RN ; Beeson, JG (PUBLIC LIBRARY SCIENCE, 2020)
    BACKGROUND: There is a high risk of Plasmodium vivax parasitaemia following treatment of falciparum malaria. Our study aimed to quantify this risk and the associated determinants using an individual patient data meta-analysis in order to identify populations in which a policy of universal radical cure, combining artemisinin-based combination therapy (ACT) with a hypnozoitocidal antimalarial drug, would be beneficial. METHODS AND FINDINGS: A systematic review of Medline, Embase, Web of Science, and the Cochrane Database of Systematic Reviews identified efficacy studies of uncomplicated falciparum malaria treated with ACT that were undertaken in regions coendemic for P. vivax between 1 January 1960 and 5 January 2018. Data from eligible studies were pooled using standardised methodology. The risk of P. vivax parasitaemia at days 42 and 63 and associated risk factors were investigated by multivariable Cox regression analyses. Study quality was assessed using a tool developed by the Joanna Briggs Institute. The study was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42018097400). In total, 42 studies enrolling 15,341 patients were included in the analysis, including 30 randomised controlled trials and 12 cohort studies. Overall, 14,146 (92.2%) patients had P. falciparum monoinfection and 1,195 (7.8%) mixed infection with P. falciparum and P. vivax. The median age was 17.0 years (interquartile range [IQR] = 9.0-29.0 years; range = 0-80 years), with 1,584 (10.3%) patients younger than 5 years. 2,711 (17.7%) patients were treated with artemether-lumefantrine (AL, 13 studies), 651 (4.2%) with artesunate-amodiaquine (AA, 6 studies), 7,340 (47.8%) with artesunate-mefloquine (AM, 25 studies), and 4,639 (30.2%) with dihydroartemisinin-piperaquine (DP, 16 studies). 14,537 patients (94.8%) were enrolled from the Asia-Pacific region, 684 (4.5%) from the Americas, and 120 (0.8%) from Africa. At day 42, the cumulative risk of vivax parasitaemia following treatment of P. falciparum was 31.1% (95% CI 28.9-33.4) after AL, 14.1% (95% CI 10.8-18.3) after AA, 7.4% (95% CI 6.7-8.1) after AM, and 4.5% (95% CI 3.9-5.3) after DP. By day 63, the risks had risen to 39.9% (95% CI 36.6-43.3), 42.4% (95% CI 34.7-51.2), 22.8% (95% CI 21.2-24.4), and 12.8% (95% CI 11.4-14.5), respectively. In multivariable analyses, the highest rate of P. vivax parasitaemia over 42 days of follow-up was in patients residing in areas of short relapse periodicity (adjusted hazard ratio [AHR] = 6.2, 95% CI 2.0-19.5; p = 0.002); patients treated with AL (AHR = 6.2, 95% CI 4.6-8.5; p < 0.001), AA (AHR = 2.3, 95% CI 1.4-3.7; p = 0.001), or AM (AHR = 1.4, 95% CI 1.0-1.9; p = 0.028) compared with DP; and patients who did not clear their initial parasitaemia within 2 days (AHR = 1.8, 95% CI 1.4-2.3; p < 0.001). The analysis was limited by heterogeneity between study populations and lack of data from very low transmission settings. Study quality was high. CONCLUSIONS: In this meta-analysis, we found a high risk of P. vivax parasitaemia after treatment of P. falciparum malaria that varied significantly between studies. These P. vivax infections are likely attributable to relapses that could be prevented with radical cure including a hypnozoitocidal agent; however, the benefits of such a novel strategy will vary considerably between geographical areas.
  • Item
    Thumbnail Image
    Identifying and combating the impacts of COVID-19 on malaria
    Rogerson, SJ ; Beeson, JG ; Laman, M ; Poespoprodjo, JR ; William, T ; Simpson, JA ; Price, RN (BMC, 2020-07-30)
    BACKGROUND: The COVID-19 pandemic has resulted in millions of infections, hundreds of thousands of deaths and major societal disruption due to lockdowns and other restrictions introduced to limit disease spread. Relatively little attention has been paid to understanding how the pandemic has affected treatment, prevention and control of malaria, which is a major cause of death and disease and predominantly affects people in less well-resourced settings. MAIN BODY: Recent successes in malaria control and elimination have reduced the global malaria burden, but these gains are fragile and progress has stalled in the past 5 years. Withdrawing successful interventions often results in rapid malaria resurgence, primarily threatening vulnerable young children and pregnant women. Malaria programmes are being affected in many ways by COVID-19. For prevention of malaria, insecticide-treated nets need regular renewal, but distribution campaigns have been delayed or cancelled. For detection and treatment of malaria, individuals may stop attending health facilities, out of fear of exposure to COVID-19, or because they cannot afford transport, and health care workers require additional resources to protect themselves from COVID-19. Supplies of diagnostics and drugs are being interrupted, which is compounded by production of substandard and falsified medicines and diagnostics. These disruptions are predicted to double the number of young African children dying of malaria in the coming year and may impact efforts to control the spread of drug resistance. Using examples from successful malaria control and elimination campaigns, we propose strategies to re-establish malaria control activities and maintain elimination efforts in the context of the COVID-19 pandemic, which is likely to be a long-term challenge. All sectors of society, including governments, donors, private sector and civil society organisations, have crucial roles to play to prevent malaria resurgence. Sparse resources must be allocated efficiently to ensure integrated health care systems that can sustain control activities against COVID-19 as well as malaria and other priority infectious diseases. CONCLUSION: As we deal with the COVID-19 pandemic, it is crucial that other major killers such as malaria are not ignored. History tells us that if we do, the consequences will be dire, particularly in vulnerable populations.
  • Item
    Thumbnail Image
    Identifying and combating the impacts of COVID-19 on malaria
    Rogerson, SJ ; Beeson, JG ; Laman, M ; Poespoprodjo, JR ; William, T ; Simpson, JA ; Price, RN (BMC, 2020-07-30)
    BACKGROUND: The COVID-19 pandemic has resulted in millions of infections, hundreds of thousands of deaths and major societal disruption due to lockdowns and other restrictions introduced to limit disease spread. Relatively little attention has been paid to understanding how the pandemic has affected treatment, prevention and control of malaria, which is a major cause of death and disease and predominantly affects people in less well-resourced settings. MAIN BODY: Recent successes in malaria control and elimination have reduced the global malaria burden, but these gains are fragile and progress has stalled in the past 5 years. Withdrawing successful interventions often results in rapid malaria resurgence, primarily threatening vulnerable young children and pregnant women. Malaria programmes are being affected in many ways by COVID-19. For prevention of malaria, insecticide-treated nets need regular renewal, but distribution campaigns have been delayed or cancelled. For detection and treatment of malaria, individuals may stop attending health facilities, out of fear of exposure to COVID-19, or because they cannot afford transport, and health care workers require additional resources to protect themselves from COVID-19. Supplies of diagnostics and drugs are being interrupted, which is compounded by production of substandard and falsified medicines and diagnostics. These disruptions are predicted to double the number of young African children dying of malaria in the coming year and may impact efforts to control the spread of drug resistance. Using examples from successful malaria control and elimination campaigns, we propose strategies to re-establish malaria control activities and maintain elimination efforts in the context of the COVID-19 pandemic, which is likely to be a long-term challenge. All sectors of society, including governments, donors, private sector and civil society organisations, have crucial roles to play to prevent malaria resurgence. Sparse resources must be allocated efficiently to ensure integrated health care systems that can sustain control activities against COVID-19 as well as malaria and other priority infectious diseases. CONCLUSION: As we deal with the COVID-19 pandemic, it is crucial that other major killers such as malaria are not ignored. History tells us that if we do, the consequences will be dire, particularly in vulnerable populations.
  • Item
    Thumbnail Image
    Iron deficiency during pregnancy is associated with a reduced risk of adverse birth outcomes in a malaria-endemic area in a longitudinal cohort study
    Fowkes, FJI ; Moore, KA ; Opi, DH ; Simpson, JA ; Langham, F ; Stanisic, DI ; Ura, A ; King, CL ; Siba, PM ; Mueller, I ; Rogerson, SJ ; Beeson, JG (BMC, 2018-09-20)
    BACKGROUND: Low birth weight (LBW) and preterm birth (PTB) are major contributors to infant mortality and chronic childhood morbidity. Understanding factors that contribute to or protect against these adverse birth outcomes is an important global health priority. Anaemia and iron deficiency are common in malaria-endemic regions, but there are concerns regarding the value of iron supplementation among pregnant women in malaria-endemic areas due to reports that iron supplementation may increase the risk of malaria. There is a lack of evidence on the impact of iron deficiency on pregnancy outcomes in malaria-endemic regions. METHODS: We determined iron deficiency in a cohort of 279 pregnant women in a malaria-endemic area of Papua New Guinea. Associations with birth weight, LBW and PTB were estimated using linear and logistic regression. A causal model using sequential mediation analyses was constructed to assess the association between iron deficiency and LBW, either independently or mediated through malaria and/or anaemia. RESULTS: Iron deficiency in pregnant women was common (71% at enrolment) and associated with higher mean birth weights (230 g; 95% confidence interval, CI 118, 514; p < 0.001), and reduced odds of LBW (adjusted odds ratio, aOR = 0.32; 95% CI 0.16, 0.64; p = 0.001) and PTB (aOR = 0.57; 95% CI 0.30, 1.09; p = 0.089). Magnitudes of effect were greatest in primigravidae (birth weight 351 g; 95% CI 188, 514; p < 0.001; LBW aOR 0.26; 95% CI 0.10, 0.66; p = 0.005; PTB aOR = 0.39, 95% CI 0.16, 0.97; p = 0.042). Sequential mediation analyses indicated that the protective association of iron deficiency on LBW was mainly mediated through mechanisms independent of malaria or anaemia. CONCLUSIONS: Iron deficiency was associated with substantially reduced odds of LBW predominantly through malaria-independent protective mechanisms, which has substantial implications for understanding risks for poor pregnancy outcomes and evaluating the benefit of iron supplementation in pregnancy. This study is the first longitudinal study to demonstrate a temporal relationship between antenatal iron deficiency and improved birth outcomes. These findings suggest that iron supplementation needs to be integrated with other strategies to prevent or treat infections and undernutrition in pregnancy to achieve substantial improvements in birth outcomes.
  • Item
    Thumbnail Image
    P. falciparum infection and maternofetal antibody transfer in malaria-endemic settings of varying transmission
    McLean, ARD ; Stanisic, D ; McGready, R ; Chotivanich, K ; Clapham, C ; Baiwog, F ; Pimanpanarak, M ; Siba, P ; Mueller, I ; King, CL ; Nosten, F ; Beeson, JG ; Rogerson, S ; Simpson, JA ; Fowkes, FJI ; Braga, ÉM (PUBLIC LIBRARY SCIENCE, 2017-10-13)
    INTRODUCTION: During pregnancy, immunoglobulin G (IgG) is transferred from the mother to the fetus, providing protection from disease in early infancy. Plasmodium falciparum infections may reduce maternofetal antibody transfer efficiency, but mechanisms remain unclear. METHODS: Mother-cord paired serum samples collected at delivery from Papua New Guinea (PNG) and the Thailand-Myanmar Border Area (TMBA) were tested for IgG1 and IgG3 to four P. falciparum antigens and measles antigen, as well as total serum IgG. Multivariable linear regression was conducted to assess the association of peripheral P. falciparum infection during pregnancy or placental P. falciparum infection assessed at delivery with maternofetal antibody transfer efficiency. Path analysis assessed the extent to which associations between P. falciparum infection and antibody transfer were mediated by gestational age at delivery or levels of maternal total serum IgG. RESULTS: Maternofetal antibody transfer efficiency of IgG1 and IgG3 was lower in PNG compared to TMBA (mean difference in cord antibody levels (controlling for maternal antibody levels) ranged from -0.88 to 0.09, median of -0.20 log2 units). Placental P. falciparum infections were associated with substantially lower maternofetal antibody transfer efficiency in PNG primigravid women (mean difference in cord antibody levels (controlling for maternal antibody levels) ranged from -0.62 to -0.10, median of -0.36 log2 units), but not multigravid women. The lower antibody transfer efficiency amongst primigravid women with placental infection was only partially mediated by gestational age at delivery (proportion indirect effect ranged from 0% to 18%), whereas no mediation effects of maternal total serum IgG were observed. DISCUSSION: Primigravid women may be at risk of impaired maternofetal antibody transport with placental P. falciparum infection. Direct effects of P. falciparum on the placenta, rather than earlier gestational age and elevated serum IgG, are likely responsible for the majority of the reduction in maternofetal antibody transfer efficiency with placental infection.