Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    No Preview Available
    Venetoclax treatment in patients with cancer has limited impact on circulating T and NK cells
    Teh, CE ; Peng, H ; Luo, M-X ; Tan, T ; Trussart, M ; Howson, LJ ; Chua, CC ; Muttiah, C ; Brown, F ; Ritchie, ME ; Wei, AH ; Roberts, AW ; Bryant, VL ; Anderson, MA ; Lindeman, GJ ; Huang, DCS ; Thijssen, R ; Gray, DHD (ELSEVIER, 2023-06-27)
    Venetoclax is an effective treatment for certain blood cancers, such as chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). However, most patients relapse while on venetoclax and further treatment options are limited. Combining venetoclax with immunotherapies is an attractive approach; however, a detailed understanding of how venetoclax treatment impacts normal immune cells in patients is lacking. In this study, we performed deep profiling of peripheral blood (PB) cells from patients with CLL and AML before and after short-term treatment with venetoclax using mass cytometry (cytometry by time of flight) and found no impact on the concentrations of key T-cell subsets or their expression of checkpoint molecules. We also analyzed PB from patients with breast cancer receiving venetoclax long-term using a single-cell multiomics approach (cellular indexing of transcriptomes and epitopes by sequencing) and functional assays. We found significant depletion of B-cell populations with low expression of MCL-1 relative to other immune cells, attended by extensive transcriptomic changes. By contrast, there was less impact on circulating T cells and natural killer (NK) cells, with no changes in their subset composition, transcriptome, or function following venetoclax treatment. Our data indicate that venetoclax has minimal impact on circulating T or NK cells, supporting the rationale of combining this BH3 mimetic drug with cancer immunotherapies for more durable antitumor responses.
  • Item
    No Preview Available
    Single-cell multiomics reveal the scale of multilayered adaptations enabling CLL relapse during venetoclax therapy
    Thijssen, R ; Tian, L ; Anderson, MA ; Flensburg, C ; Jarratt, A ; Garnham, AL ; Jabbari, JS ; Peng, H ; Lew, TE ; Teh, CE ; Gouil, Q ; Georgiou, A ; Tan, T ; Djajawi, TM ; Tam, CS ; Seymour, JF ; Blombery, P ; Gray, DHD ; Majewski, IJ ; Ritchie, ME ; Roberts, AW ; Huang, DCS (AMER SOC HEMATOLOGY, 2022-11-17)
    Venetoclax (VEN) inhibits the prosurvival protein BCL2 to induce apoptosis and is a standard therapy for chronic lymphocytic leukemia (CLL), delivering high complete remission rates and prolonged progression-free survival in relapsed CLL but with eventual loss of efficacy. A spectrum of subclonal genetic changes associated with VEN resistance has now been described. To fully understand clinical resistance to VEN, we combined single-cell short- and long-read RNA-sequencing to reveal the previously unappreciated scale of genetic and epigenetic changes underpinning acquired VEN resistance. These appear to be multilayered. One layer comprises changes in the BCL2 family of apoptosis regulators, especially the prosurvival family members. This includes previously described mutations in BCL2 and amplification of the MCL1 gene but is heterogeneous across and within individual patient leukemias. Changes in the proapoptotic genes are notably uncommon, except for single cases with subclonal losses of BAX or NOXA. Much more prominent was universal MCL1 gene upregulation. This was driven by an overlying layer of emergent NF-κB (nuclear factor kappa B) activation, which persisted in circulating cells during VEN therapy. We discovered that MCL1 could be a direct transcriptional target of NF-κB. Both the switch to alternative prosurvival factors and NF-κB activation largely dissipate following VEN discontinuation. Our studies reveal the extent of plasticity of CLL cells in their ability to evade VEN-induced apoptosis. Importantly, these findings pinpoint new approaches to circumvent VEN resistance and provide a specific biological justification for the strategy of VEN discontinuation once a maximal response is achieved rather than maintaining long-term selective pressure with the drug.
  • Item
    No Preview Available
    Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia
    Moujalled, DM ; Brown, FC ; Chua, CC ; Dengler, MA ; Pomilio, G ; Anstee, NS ; Litalien, V ; Thompson, E ; Morley, T ; MacRaild, S ; Tiong, IS ; Morris, R ; Dun, K ; Zordan, A ; Shah, J ; Banquet, S ; Halilovic, E ; Morris, E ; Herold, MJ ; Lessene, G ; Adams, JM ; Huang, DCS ; Roberts, AW ; Blombery, P ; Wei, AH (AMER SOC HEMATOLOGY, 2023-02-09)
    Randomized trials in acute myeloid leukemia (AML) have demonstrated improved survival by the BCL-2 inhibitor venetoclax combined with azacitidine in older patients, and clinical trials are actively exploring the role of venetoclax in combination with intensive chemotherapy in fitter patients with AML. As most patients still develop recurrent disease, improved understanding of relapse mechanisms is needed. We find that 17% of patients relapsing after venetoclax-based therapy for AML have acquired inactivating missense or frameshift/nonsense mutations in the apoptosis effector gene BAX. In contrast, such variants were rare after genotoxic chemotherapy. BAX variants arose within either leukemic or preleukemic compartments, with multiple mutations observed in some patients. In vitro, AML cells with mutated BAX were competitively selected during prolonged exposure to BCL-2 antagonists. In model systems, AML cells rendered deficient for BAX, but not its close relative BAK, displayed resistance to BCL-2 targeting, whereas sensitivity to conventional chemotherapy was variable. Acquired mutations in BAX during venetoclax-based therapy represent a novel mechanism of resistance to BH3-mimetics and a potential barrier to the long-term efficacy of drugs targeting BCL-2 in AML.
  • Item
    Thumbnail Image
    Germline MBD4 deficiency causes a multi-tumor predisposition syndrome
    Palles, C ; West, HD ; Chew, E ; Galavotti, S ; Flensburg, C ; Grolleman, JE ; Jansen, EAM ; Curley, H ; Chegwidden, L ; Arbe-Barnes, EH ; Lander, N ; Truscott, R ; Pagan, J ; Bajel, A ; Sherwood, K ; Martin, L ; Thomas, H ; Georgiou, D ; Fostira, F ; Goldberg, Y ; Adams, DJ ; van der Biezen, SAM ; Christie, M ; Clendenning, M ; Thomas, LE ; Deltas, C ; Dimovski, AJ ; Dymerska, D ; Lubinski, J ; Mahmood, K ; van der Post, RS ; Sanders, M ; Weitz, J ; Taylor, JC ; Turnbull, C ; Vreede, L ; van Wezel, T ; Whalley, C ; Arnedo-Pac, C ; Caravagna, G ; Cross, W ; Chubb, D ; Frangou, A ; Gruber, AJ ; Kinnersley, B ; Noyvert, B ; Church, D ; Graham, T ; Houlston, R ; Lopez-Bigas, N ; Sottoriva, A ; Wedge, D ; Jenkins, MA ; Kuiper, RP ; Roberts, AW ; Cheadle, JP ; Ligtenberg, MJL ; Hoogerbrugge, N ; Koelzer, VH ; Rivas, AD ; Winship, IM ; Ponte, CR ; Buchanan, DD ; Power, DG ; Green, A ; Tomlinson, IPM ; Sampson, JR ; Majewski, IJ ; de Voer, RM (CELL PRESS, 2022-05-05)
    We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5'-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management.
  • Item
    Thumbnail Image
    Single-cell sequencing demonstrates complex resistance landscape in CLL and MCL treated with BTK and BCL2 inhibitors
    Thompson, ER ; Nguyen, T ; Kankanige, Y ; Markham, JF ; Anderson, MA ; Handunnetti, SM ; Thijssen, R ; Yeh, PS-H ; Tam, CS ; Seymour, JF ; Roberts, AW ; Westerman, DA ; Blombery, P (ELSEVIER, 2022-01-25)
    The genomic landscape of resistance to targeted agents (TAs) used as monotherapy in chronic lymphocytic leukemia (CLL) is complex and often heterogeneous at the patient level. To gain insight into the clonal architecture of acquired genomic resistance to Bruton tyrosine kinase (BTK) inhibitors and B-cell lymphoma 2 (BCL2) inhibitors in CLL, particularly in patients carrying multiple resistance mutations, we performed targeted single-cell DNA sequencing of 8 patients who developed progressive disease (PD) on TAs (either class). In all cases, analysis of single-cell architecture revealed mutual exclusivity between multiple resistance mutations to the same TA class, variable clonal co-occurrence of multiple mutations affecting different TAs in patients exposed to both classes, and a phenomenon of multiple independent emergences of identical nucleotide changes leading to canonical resistance mutations. We also report the first observation of established BCL2 resistance mutations in a patient with mantle cell lymphoma (MCL) following PD on sequential monotherapy, implicating BCL2 as a venetoclax resistance mechanism in MCL. Taken together, these data reveal the significant clonal complexity of CLL and MCL progression on TAs at the nucleotide level and confirm the presence of multiple, clonally independent, mechanisms of TA resistance within each individual disease context.
  • Item
    Thumbnail Image
    Comprehensive characterization of single-cell full-length isoforms in human and mouse with long-read sequencing
    Tian, L ; Jabbari, JS ; Thijssen, R ; Gouil, Q ; Amarasinghe, SL ; Voogd, O ; Kariyawasam, H ; Du, MRM ; Schuster, J ; Wang, C ; Su, S ; Dong, X ; Law, CW ; Lucattini, A ; Prawer, YDJ ; Collar-Fernandez, C ; Chung, JD ; Naim, T ; Chan, A ; Ly, CH ; Lynch, GS ; Ryall, JG ; Anttila, CJA ; Peng, H ; Anderson, MA ; Flensburg, C ; Majewski, I ; Roberts, AW ; Huang, DCS ; Clark, MB ; Ritchie, ME (BMC, 2021-11-11)
    A modified Chromium 10x droplet-based protocol that subsamples cells for both short-read and long-read (nanopore) sequencing together with a new computational pipeline (FLAMES) is developed to enable isoform discovery, splicing analysis, and mutation detection in single cells. We identify thousands of unannotated isoforms and find conserved functional modules that are enriched for alternative transcript usage in different cell types and species, including ribosome biogenesis and mRNA splicing. Analysis at the transcript level allows data integration with scATAC-seq on individual promoters, improved correlation with protein expression data, and linked mutations known to confer drug resistance to transcriptome heterogeneity.
  • Item
    No Preview Available
    Clonal hematopoiesis, myeloid disorders and BAX-mutated myelopoiesis in patients receiving venetoclax for CLL
    Blombery, P ; Lew, TE ; Dengler, MA ; Thompson, ER ; Lin, VS ; Chen, X ; Nguyen, T ; Panigrahi, A ; Handunnetti, SM ; Carney, DA ; Westerman, DA ; Tam, CS ; Adams, JM ; Wei, AH ; Huang, DCS ; Seymour, JF ; Roberts, AW ; Anderson, MA (AMER SOC HEMATOLOGY, 2022-02-24)
    The BCL2 inhibitor venetoclax has established therapeutic roles in chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). As BCL2 is an important determinant of survival of both myeloid progenitor and B cells, we investigated whether clinical and molecular abnormalities arise in the myeloid compartment during long-term continuous venetoclax treatment of CLL in 89 patients (87 with relapsed/refractory CLL). Over a median follow-up of 75 (range 21-98) months, persistent cytopenias (≥1 of neutropenia, thrombocytopenia, anemia) lasting ≥4 months and unrelated to CLL occurred in 25 patients (28%). Of these patients, 20 (80%) displayed clonal hematopoiesis, including 10 with therapy-related myeloid neoplasms (t-MNs). t-MNs occurred exclusively in patients previously exposed to fludarabine-alkylator combination therapy with a cumulative 5-year incidence of 10.4% after venetoclax initiation, consistent with rates reported for patients exposed to fludarabine-alkylator combination therapy without venetoclax. To determine whether the altered myelopoiesis reflected the acquisition of mutations, we analyzed samples from patients with no or minimal bone marrow CLL burden (n = 41). Mutations in the apoptosis effector BAX were identified in 32% (13/41). In cellular assays, C-terminal BAX mutants abrogated outer mitochondrial membrane localization of BAX and engendered resistance to venetoclax killing. BAX-mutated clonal hematopoiesis occurred independently of prior fludarabine-alkylator combination therapy exposure and was not associated with t-MNs. Single-cell sequencing revealed clonal co-occurrence of mutations in BAX with DNMT3A or ASXL1. We also observed simultaneous BCL2 mutations within CLL cells and BAX mutations in the myeloid compartment of the same patients, indicating lineage-specific adaptation to venetoclax therapy.
  • Item
    No Preview Available
    Outcomes of patients with CLL sequentially resistant to both BCL2 and BTK inhibition
    Lew, TE ; Lin, VS ; Cliff, ER ; Blombery, P ; Thompson, ER ; Handunnetti, SM ; Westerman, DA ; Kuss, BJ ; Tam, CS ; Huang, DCS ; Seymour, JF ; Roberts, AW ; Anderson, MA (ELSEVIER, 2021-10-26)
    Covalent Bruton tyrosine kinase inhibitors (BTKi's) and the B-cell lymphoma 2 (BCL2) inhibitor venetoclax have significantly improved outcomes for patients with chronic lymphocytic leukemia (CLL), especially those with biologically adverse disease. Patients with CLL resistant to their first targeted agent (TA) can be effectively treated with the alternative class. However, relapses are expected with second-line TA therapy, and the clinical challenge of double class-resistant disease is now emerging with increasing frequency. To define the characteristics and outcomes of patients with double class-resistant disease, we retrospectively analyzed 17 patients who developed progressive disease (PD) on both TA classes for CLL (venetoclax, then BTKi, n=12; BTKi, then venetoclax, n = 5). The cohort was heavily pretreated (median lines of prior therapy, 4) and enriched for adverse disease genetics (complex karyotype, 12 of 12 tested [100%]; del(17p)/TP53 mutations, 15 of 17 [88%]). The median time to progression on prior venetoclax was 24 months (range, 6-94 months) and was 25 months (range, 1-55 months) on prior BTKi. Progression on second-line TA was manifest as progressive CLL in 11 patients and as Richter transformation in 6. The median overall survival after progression on second-line TA was 3.6 months (95% confidence interval, 2-11 months). Patients with double class-resistant CLL have a dismal prognosis, representing a group of high unmet need.
  • Item
    Thumbnail Image
    Characterization of a novel venetoclax resistance mutation (BCL2 Phe104Ile) observed in follicular lymphoma
    Blombery, P ; Birkinshaw, RW ; Nguyen, T ; Gong, J-N ; Thompson, ER ; Xu, Z ; Westerman, DA ; Czabotar, PE ; Dickinson, M ; Huang, DCS ; Seymour, JF ; Roberts, AW (WILEY, 2019-09)
  • Item
    No Preview Available
    Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias
    Thijssen, R ; Diepstraten, ST ; Moujalled, D ; Chew, E ; Flensburg, C ; Shi, MX ; Dengler, MA ; Litalien, V ; MacRaild, S ; Chen, M ; Anstee, NS ; Reljic, B ; Gabriel, SS ; Djajawi, TM ; Riffkin, CD ; Aubrey, BJ ; Chang, C ; Tai, L ; Xu, Z ; Morley, T ; Pomilio, G ; Bruedigam, C ; Kallies, A ; Stroud, DA ; Bajel, A ; Kluck, RM ; Lane, SW ; Schoumacher, M ; Banquet, S ; Majewski, IJ ; Strasser, A ; Roberts, AW ; Huang, DCS ; Brown, FC ; Kelly, GL ; Wei, AH (AMER SOC HEMATOLOGY, 2021-05-20)
    Selective targeting of BCL-2 with the BH3-mimetic venetoclax has been a transformative treatment for patients with various leukemias. TP-53 controls apoptosis upstream of where BCL-2 and its prosurvival relatives, such as MCL-1, act. Therefore, targeting these prosurvival proteins could trigger apoptosis across diverse blood cancers, irrespective of TP53 mutation status. Indeed, targeting BCL-2 has produced clinically relevant responses in blood cancers with aberrant TP-53. However, in our study, TP53-mutated or -deficient myeloid and lymphoid leukemias outcompeted isogenic controls with intact TP-53, unless sufficient concentrations of BH3-mimetics targeting BCL-2 or MCL-1 were applied. Strikingly, tumor cells with TP-53 dysfunction escaped and thrived over time if inhibition of BCL-2 or MCL-1 was sublethal, in part because of an increased threshold for BAX/BAK activation in these cells. Our study revealed the key role of TP-53 in shaping long-term responses to BH3-mimetic drugs and reconciled the disparate pattern of initial clinical response to venetoclax, followed by subsequent treatment failure among patients with TP53-mutant chronic lymphocytic leukemia or acute myeloid leukemia. In contrast to BH3-mimetics targeting just BCL-2 or MCL-1 at doses that are individually sublethal, a combined BH3-mimetic approach targeting both prosurvival proteins enhanced lethality and durably suppressed the leukemia burden, regardless of TP53 mutation status. Our findings highlight the importance of using sufficiently lethal treatment strategies to maximize outcomes of patients with TP53-mutant disease. In addition, our findings caution against use of sublethal BH3-mimetic drug regimens that may enhance the risk of disease progression driven by emergent TP53-mutant clones.