Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Antibody Targets on the Surface of Plasmodium falciparum-Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children
    Chan, J-A ; Boyle, MJ ; Moore, KA ; Reiling, L ; Lin, Z ; Hasang, W ; Avril, M ; Manning, L ; Mueller, I ; Laman, M ; Davis, T ; Smith, JD ; Rogerson, SJ ; Simpson, JA ; Fowkes, FJI ; Beeson, JG (Oxford University Press, 2019-03-01)
    BACKGROUND: Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature contributes to pathogenesis of severe malaria in children. This mechanism is mediated by antigens expressed on the IE surface. However, knowledge of specific targets and functions of antibodies to IE surface antigens that protect against severe malaria is limited. METHODS: Antibodies to IE surface antigens were examined in a case-control study of young children in Papua New Guinea presenting with severe or uncomplicated malaria (n = 448), using isolates with a virulent phenotype associated with severe malaria, and functional opsonic phagocytosis assays. We used genetically modified isolates and recombinant P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains to quantify PfEMP1 as a target of antibodies associated with disease severity. RESULTS: Antibodies to the IE surface and recombinant PfEMP1 domains were significantly higher in uncomplicated vs severe malaria and were boosted following infection. The use of genetically modified P. falciparum revealed that PfEMP1 was a major target of antibodies and that PfEMP1-specific antibodies were associated with reduced odds of severe malaria. Furthermore, antibodies promoting the opsonic phagocytosis of IEs by monocytes were lower in those with severe malaria. CONCLUSIONS: Findings suggest that PfEMP1 is a dominant target of antibodies associated with reduced risk of severe malaria, and function in part by promoting opsonic phagocytosis.
  • Item
    No Preview Available
    The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis
    Commons, RJ ; Simpson, JA ; Thriemer, K ; Abreha, T ; Adam, I ; Anstey, NM ; Assefa, A ; Awab, GR ; Baird, JK ; Barber, BE ; Chu, CS ; Dahal, P ; Daher, A ; Davis, TME ; Dondorp, AM ; Grigg, MJ ; Humphreys, GS ; Hwang, J ; Karunajeewa, H ; Laman, M ; Lidia, K ; Moore, BR ; Mueller, I ; Nosten, F ; Pasaribu, AP ; Pereira, DB ; Phyo, AP ; Poespoprodjo, JR ; Sibley, CH ; Stepniewska, K ; Sutanto, I ; Thwaites, G ; Hien, TT ; White, NJ ; William, T ; Woodrow, CJ ; Guerin, PJ ; Price, RN ; Menendez, C (PUBLIC LIBRARY SCIENCE, 2019-10)
    BACKGROUND: Artemisinin-based combination therapy (ACT) is recommended for uncomplicated Plasmodium vivax malaria in areas of emerging chloroquine resistance. We undertook a systematic review and individual patient data meta-analysis to compare the efficacies of dihydroartemisinin-piperaquine (DP) and artemether-lumefantrine (AL) with or without primaquine (PQ) on the risk of recurrent P. vivax. METHODS AND FINDINGS: Clinical efficacy studies of uncomplicated P. vivax treated with DP or AL and published between January 1, 2000, and January 31, 2018, were identified by conducting a systematic review registered with the International Prospective Register of Systematic Reviews (PROSPERO): CRD42016053310. Investigators of eligible studies were invited to contribute individual patient data that were pooled using standardised methodology. The effect of mg/kg dose of piperaquine/lumefantrine, ACT administered, and PQ on the rate of P. vivax recurrence between days 7 and 42 after starting treatment were investigated by Cox regression analyses according to an a priori analysis plan. Secondary outcomes were the risk of recurrence assessed on days 28 and 63. Nineteen studies enrolling 2,017 patients were included in the analysis. The risk of recurrent P. vivax at day 42 was significantly higher in the 384 patients treated with AL alone (44.0%, 95% confidence interval [CI] 38.7-49.8) compared with the 812 patients treated with DP alone (9.3%, 95% CI 7.1-12.2): adjusted hazard ratio (AHR) 12.63 (95% CI 6.40-24.92), p < 0.001. The rates of recurrence assessed at days 42 and 63 were associated inversely with the dose of piperaquine: AHRs (95% CI) for every 5-mg/kg increase 0.63 (0.48-0.84), p = 0.0013 and 0.83 (0.73-0.94), p = 0.0033, respectively. The dose of lumefantrine was not significantly associated with the rate of recurrence (1.07 for every 5-mg/kg increase, 95% CI 0.99-1.16, p = 0.0869). In a post hoc analysis, in patients with symptomatic recurrence after AL, the mean haemoglobin increased 0.13 g/dL (95% CI 0.01-0.26) for every 5 days that recurrence was delayed, p = 0.0407. Coadministration of PQ reduced substantially the rate of recurrence assessed at day 42 after AL (AHR = 0.20, 95% CI 0.10-0.41, p < 0.001) and at day 63 after DP (AHR = 0.08, 95% CI 0.01-0.70, p = 0.0233). Results were limited by follow-up of patients to 63 days or less and nonrandomised treatment groups. CONCLUSIONS: In this study, we observed the risk of P. vivax recurrence at day 42 to be significantly lower following treatment with DP compared with AL, reflecting the longer period of post-treatment prophylaxis; this risk was reduced substantially by coadministration with PQ. We found that delaying P. vivax recurrence was associated with a small but significant improvement in haemoglobin. These results highlight the benefits of PQ radical cure and also the provision of blood-stage antimalarial agents with prolonged post-treatment prophylaxis.
  • Item
    Thumbnail Image
    New Insights into Acquisition, Boosting, and Longevity of Immunity to Malaria in Pregnant Women
    Fowkes, FJI ; McGready, R ; Cross, NJ ; Hommel, M ; Simpson, JA ; Elliott, SR ; Richards, JS ; Lackovic, K ; Viladpai-Nguen, J ; Narum, D ; Tsuboi, T ; Anders, RF ; Nosten, F ; Beeson, JG (OXFORD UNIV PRESS INC, 2012-11-15)
    BACKGROUND: How antimalarial antibodies are acquired and maintained during pregnancy and boosted after reinfection with Plasmodium falciparum and Plasmodium vivax is unknown. METHODS: A nested case-control study of 467 pregnant women (136 Plasmodium-infected cases and 331 uninfected control subjects) in northwestern Thailand was conducted. Antibody levels to P. falciparum and P. vivax merozoite antigens and the pregnancy-specific PfVAR2CSA antigen were determined at enrollment (median 10 weeks gestation) and throughout pregnancy until delivery. RESULTS: Antibodies to P. falciparum and P. vivax were highly variable over time, and maintenance of high levels of antimalarial antibodies involved highly dynamic responses resulting from intermittent exposure to infection. There was evidence of boosting with each successive infection for P. falciparum responses, suggesting the presence of immunological memory. However, the half-lives of Plasmodium antibody responses were relatively short, compared with measles (457 years), and much shorter for merozoite responses (0.8-7.6 years), compared with PfVAR2CSA responses (36-157 years). The longer half-life of antibodies to PfVAR2CSA suggests that antibodies acquired in one pregnancy may be maintained to protect subsequent pregnancies. CONCLUSIONS: These findings may have important practical implications for predicting the duration of vaccine-induced responses by candidate antigens and supports the development of malaria vaccines to protect pregnant women.
  • Item
    Thumbnail Image
    Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting
    Charnaud, SC ; McGready, R ; Herten-Crabb, A ; Powell, R ; Guy, A ; Langer, C ; Richards, JS ; Gilson, PR ; Chotivanich, K ; Tsuboi, T ; Narum, DL ; Pimanpanarak, M ; Simpson, JA ; Beeson, JG ; Nosten, F ; Fowkes, FJI (NATURE PUBLISHING GROUP, 2016-02-10)
    During pregnancy immunoglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57-0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33-0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09-0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women.
  • Item
    Thumbnail Image
    Competing risk events in antimalarial drug trials in uncomplicated Plasmodium falciparum malaria: a WorldWide Antimalarial Resistance Network individual participant data meta-analysis
    Dahal, P ; Simpson, JA ; Abdulla, S ; Achan, J ; Adam, I ; Agarwal, A ; Allan, R ; Anvikar, AR ; Arinaitwe, E ; Ashley, EA ; Awab, GR ; Bassat, Q ; Bjorkman, A ; Bompart, F ; Borrmann, S ; Bousema, T ; Broek, I ; Bukirwa, H ; Carrara, VI ; Corsi, M ; Cot, M ; D'Alessandro, U ; Davis, TME ; de Wit, M ; Deloron, P ; Desai, M ; Dimbu, PR ; Djalle, D ; Djimde, A ; Dorsey, G ; Doumbo, OK ; Drakeley, CJ ; Duparc, S ; Edstein, MD ; Espie, E ; Faiz, A ; Falade, C ; Fanello, C ; Faucher, J-F ; Faye, B ; Fortes, FDJ ; Gadalla, NB ; Gaye, O ; Gil, JP ; Greenwood, B ; Grivoyannis, A ; Hamed, K ; Hien, TT ; Hughes, D ; Humphreys, G ; Hwang, J ; Ibrahim, ML ; Janssens, B ; Jullien, V ; Juma, E ; Kamugisha, E ; Karema, C ; Karunajeewa, HA ; Kiechel, JR ; Kironde, F ; Kofoed, P-E ; Kremsner, PG ; Lameyre, V ; Lee, SJ ; Marsh, K ; Martensson, A ; Mayxay, M ; Menan, H ; Mens, P ; Mutabingwa, TK ; Ndiaye, J-L ; Ngasala, BE ; Noedl, H ; Nosten, F ; Offianan, AT ; Oguike, M ; Ogutu, BR ; Olliaro, P ; Ouedraogo, JB ; Piola, P ; Plowe, CV ; Plucinski, MM ; Pratt, OJ ; Premji, Z ; Ramharter, M ; Rogier, C ; Rombo, L ; Rosenthal, PJ ; Sawa, P ; Schramm, B ; Sibley, C ; Sinou, V ; Sirima, S ; Smithuis, F ; Staedke, SG ; Sutanto, I ; Talisuna, AO ; Tarning, J ; Taylor, WRJ ; Temu, E ; Thriemer, KL ; Thuy, NN ; Udhayakumar, V ; Ursing, J ; van Herp, M ; van Vugt, M ; Whitty, C ; William, Y ; Winnips, C ; Zongo, I ; Guerin, P ; Price, RN ; Stepniewska, K (BMC, 2019-07-05)
    BACKGROUND: Therapeutic efficacy studies in uncomplicated Plasmodium falciparum malaria are confounded by new infections, which constitute competing risk events since they can potentially preclude/pre-empt the detection of subsequent recrudescence of persistent, sub-microscopic primary infections. METHODS: Antimalarial studies typically report the risk of recrudescence derived using the Kaplan-Meier (K-M) method, which considers new infections acquired during the follow-up period as censored. Cumulative Incidence Function (CIF) provides an alternative approach for handling new infections, which accounts for them as a competing risk event. The complement of the estimate derived using the K-M method (1 minus K-M), and the CIF were used to derive the risk of recrudescence at the end of the follow-up period using data from studies collated in the WorldWide Antimalarial Resistance Network data repository. Absolute differences in the failure estimates derived using these two methods were quantified. In comparative studies, the equality of two K-M curves was assessed using the log-rank test, and the equality of CIFs using Gray's k-sample test (both at 5% level of significance). Two different regression modelling strategies for recrudescence were considered: cause-specific Cox model and Fine and Gray's sub-distributional hazard model. RESULTS: Data were available from 92 studies (233 treatment arms, 31,379 patients) conducted between 1996 and 2014. At the end of follow-up, the median absolute overestimation in the estimated risk of cumulative recrudescence by using 1 minus K-M approach was 0.04% (interquartile range (IQR): 0.00-0.27%, Range: 0.00-3.60%). The overestimation was correlated positively with the proportion of patients with recrudescence [Pearson's correlation coefficient (ρ): 0.38, 95% Confidence Interval (CI) 0.30-0.46] or new infection [ρ: 0.43; 95% CI 0.35-0.54]. In three study arms, the point estimates of failure were greater than 10% (the WHO threshold for withdrawing antimalarials) when the K-M method was used, but remained below 10% when using the CIF approach, but the 95% confidence interval included this threshold. CONCLUSIONS: The 1 minus K-M method resulted in a marginal overestimation of recrudescence that became increasingly pronounced as antimalarial efficacy declined, particularly when the observed proportion of new infection was high. The CIF approach provides an alternative approach for derivation of failure estimates in antimalarial trials, particularly in high transmission settings.
  • Item
    Thumbnail Image
    Iron deficiency during pregnancy is associated with a reduced risk of adverse birth outcomes in a malaria-endemic area in a longitudinal cohort study
    Fowkes, FJI ; Moore, KA ; Opi, DH ; Simpson, JA ; Langham, F ; Stanisic, DI ; Ura, A ; King, CL ; Siba, PM ; Mueller, I ; Rogerson, SJ ; Beeson, JG (BMC, 2018-09-20)
    BACKGROUND: Low birth weight (LBW) and preterm birth (PTB) are major contributors to infant mortality and chronic childhood morbidity. Understanding factors that contribute to or protect against these adverse birth outcomes is an important global health priority. Anaemia and iron deficiency are common in malaria-endemic regions, but there are concerns regarding the value of iron supplementation among pregnant women in malaria-endemic areas due to reports that iron supplementation may increase the risk of malaria. There is a lack of evidence on the impact of iron deficiency on pregnancy outcomes in malaria-endemic regions. METHODS: We determined iron deficiency in a cohort of 279 pregnant women in a malaria-endemic area of Papua New Guinea. Associations with birth weight, LBW and PTB were estimated using linear and logistic regression. A causal model using sequential mediation analyses was constructed to assess the association between iron deficiency and LBW, either independently or mediated through malaria and/or anaemia. RESULTS: Iron deficiency in pregnant women was common (71% at enrolment) and associated with higher mean birth weights (230 g; 95% confidence interval, CI 118, 514; p < 0.001), and reduced odds of LBW (adjusted odds ratio, aOR = 0.32; 95% CI 0.16, 0.64; p = 0.001) and PTB (aOR = 0.57; 95% CI 0.30, 1.09; p = 0.089). Magnitudes of effect were greatest in primigravidae (birth weight 351 g; 95% CI 188, 514; p < 0.001; LBW aOR 0.26; 95% CI 0.10, 0.66; p = 0.005; PTB aOR = 0.39, 95% CI 0.16, 0.97; p = 0.042). Sequential mediation analyses indicated that the protective association of iron deficiency on LBW was mainly mediated through mechanisms independent of malaria or anaemia. CONCLUSIONS: Iron deficiency was associated with substantially reduced odds of LBW predominantly through malaria-independent protective mechanisms, which has substantial implications for understanding risks for poor pregnancy outcomes and evaluating the benefit of iron supplementation in pregnancy. This study is the first longitudinal study to demonstrate a temporal relationship between antenatal iron deficiency and improved birth outcomes. These findings suggest that iron supplementation needs to be integrated with other strategies to prevent or treat infections and undernutrition in pregnancy to achieve substantial improvements in birth outcomes.
  • Item
    Thumbnail Image
    P. falciparum infection and maternofetal antibody transfer in malaria-endemic settings of varying transmission
    McLean, ARD ; Stanisic, D ; McGready, R ; Chotivanich, K ; Clapham, C ; Baiwog, F ; Pimanpanarak, M ; Siba, P ; Mueller, I ; King, CL ; Nosten, F ; Beeson, JG ; Rogerson, S ; Simpson, JA ; Fowkes, FJI ; Braga, ÉM (PUBLIC LIBRARY SCIENCE, 2017-10-13)
    INTRODUCTION: During pregnancy, immunoglobulin G (IgG) is transferred from the mother to the fetus, providing protection from disease in early infancy. Plasmodium falciparum infections may reduce maternofetal antibody transfer efficiency, but mechanisms remain unclear. METHODS: Mother-cord paired serum samples collected at delivery from Papua New Guinea (PNG) and the Thailand-Myanmar Border Area (TMBA) were tested for IgG1 and IgG3 to four P. falciparum antigens and measles antigen, as well as total serum IgG. Multivariable linear regression was conducted to assess the association of peripheral P. falciparum infection during pregnancy or placental P. falciparum infection assessed at delivery with maternofetal antibody transfer efficiency. Path analysis assessed the extent to which associations between P. falciparum infection and antibody transfer were mediated by gestational age at delivery or levels of maternal total serum IgG. RESULTS: Maternofetal antibody transfer efficiency of IgG1 and IgG3 was lower in PNG compared to TMBA (mean difference in cord antibody levels (controlling for maternal antibody levels) ranged from -0.88 to 0.09, median of -0.20 log2 units). Placental P. falciparum infections were associated with substantially lower maternofetal antibody transfer efficiency in PNG primigravid women (mean difference in cord antibody levels (controlling for maternal antibody levels) ranged from -0.62 to -0.10, median of -0.36 log2 units), but not multigravid women. The lower antibody transfer efficiency amongst primigravid women with placental infection was only partially mediated by gestational age at delivery (proportion indirect effect ranged from 0% to 18%), whereas no mediation effects of maternal total serum IgG were observed. DISCUSSION: Primigravid women may be at risk of impaired maternofetal antibody transport with placental P. falciparum infection. Direct effects of P. falciparum on the placenta, rather than earlier gestational age and elevated serum IgG, are likely responsible for the majority of the reduction in maternofetal antibody transfer efficiency with placental infection.
  • Item
    Thumbnail Image
    Assessing the utility of an anti-malarial pharmacokinetic-pharmacodynamic model for aiding drug clinical development
    ZALOUMIS, SOPHIE ; Humberstone, Andrew ; Charman, Susan A. ; Price, Ric N. ; Moehrle, Joerg ; Gamo-Benito, Javier ; Jamsen, Kris M. ; SMITH, KATHERINE ; Simpson, Julie A. (BioMed Central, 2012)