- Medical Biology - Research Publications
Medical Biology - Research Publications
Permanent URI for this collection
Search Results
Now showing
1 - 10 of 793
-
ItemNanobodies against Pfs230 block Plasmodium falciparum transmissionDietrich, MH ; Gabriela, M ; Reaksudsan, K ; Dixon, MWA ; Chan, L-J ; Adair, A ; Trickey, S ; 'Neill, MTO ; Tan, LL ; Lopaticki, S ; Healer, J ; Keremane, S ; Cowman, AF ; Tham, W-H (PORTLAND PRESS LTD, 2022-12-01)Transmission blocking interventions can stop malaria parasite transmission from mosquito to human by inhibiting parasite infection in mosquitos. One of the most advanced candidates for a malaria transmission blocking vaccine is Pfs230. Pfs230 is the largest member of the 6-cysteine protein family with 14 consecutive 6-cysteine domains and is expressed on the surface of gametocytes and gametes. Here, we present the crystal structure of the first two 6-cysteine domains of Pfs230. We identified high affinity Pfs230-specific nanobodies that recognized gametocytes and bind to distinct sites on Pfs230, which were isolated from immunized alpacas. Using two non-overlapping Pfs230 nanobodies, we show that these nanobodies significantly blocked P. falciparum transmission and reduced the formation of exflagellation centers. Crystal structures of the transmission blocking nanobodies with the first 6-cysteine domain of Pfs230 confirm that they bind to different epitopes. In addition, these nanobodies bind to Pfs230 in the absence of the prodomain, in contrast with the binding of known Pfs230 transmission blocking antibodies. These results provide additional structural insight into Pfs230 domains and elucidate a mechanism of action of transmission blocking Pfs230 nanobodies.
-
ItemLeveraging Comprehensive Cancer Registry Data to Enable a Broad Range of Research, Audit and Patient Support ActivitiesLee, B ; Gately, L ; Lok, SW ; Tran, B ; Lee, M ; Wong, R ; Markman, B ; Dunn, K ; Wong, V ; Loft, M ; Jalili, A ; Anton, A ; To, R ; Andrews, M ; Gibbs, P (MDPI, 2022-09-01)Traditional cancer registries have often been siloed efforts, established by single groups with limited objectives. There is the potential for registry data to support a broad range of research, audit and education initiatives. Here, we describe the establishment of a series of comprehensive cancer registries across the spectrum of common solid cancers. The experience and learnings of each registry team as they develop, implement and then use collected data for a range of purposes, that informs the conduct and output of other registries in a virtuous cycle. Each registry is multi-site, multi-disciplinary and aims to collect data of maximal interest and value to a broad range of enquiry, which would be accessible to any researcher with a high-quality proposal. Lessons learnt include the need for careful and continuous curation of data fields, with regular database updates, and the need for a continued focus on data quality. The registry data as a standalone resource has supported numerous projects, but linkage with external datasets with patients in common has enhanced the audit and research potential. Multiple projects have linked registry data with matched tissue specimens to support prognostic and predictive biomarker studies, both validation and discovery. Registry-based biomarker trials have been successfully supported, generating novel and practice-changing data. Registry-based clinical trials, particularly randomised studies exploring the optimal use of available therapy options are now complementing the research conducted in traditional clinical trials. More recent projects supported by the registries include health economic studies, personalised patient education material, and increased consumer engagement, including consumer entered data.
-
ItemImproved Neutralisation of the SARS-CoV-2 Omicron Variant following a Booster Dose of Pfizer-BioNTech (BNT162b2) COVID-19 Vaccine.Basile, K ; Rockett, RJ ; McPhie, K ; Fennell, M ; Johnson-Mackinnon, J ; Agius, JE ; Fong, W ; Rahman, H ; Ko, D ; Donavan, L ; Hueston, L ; Lam, C ; Arnott, A ; Chen, SC-A ; Maddocks, S ; O'Sullivan, MV ; Dwyer, DE ; Sintchenko, V ; Kok, J (MDPI AG, 2022-09-13)In late November 2021, the World Health Organization declared the SARS-CoV-2 lineage B.1.1.529 the fifth variant of concern, Omicron. This variant has acquired over 30 mutations in the spike protein (with 15 in the receptor-binding domain), raising concerns that Omicron could evade naturally acquired and vaccine-derived immunity. We utilized an authentic virus, multicycle neutralisation assay to demonstrate that sera collected one, three, and six months post-two doses of Pfizer-BioNTech BNT162b2 had a limited ability to neutralise SARS-CoV-2. However, four weeks after a third dose, neutralising antibody titres were boosted. Despite this increase, neutralising antibody titres were reduced fourfold for Omicron compared to lineage A.2.2 SARS-CoV-2.
-
ItemMaternal gut microbiota during pregnancy and the composition of immune cells in infancyGao, Y ; O'Hely, M ; Quinn, TP ; Ponsonby, A-L ; Harrison, LC ; Frokiaer, H ; Tang, MLK ; Brix, S ; Kristiansen, K ; Burgner, D ; Saffery, R ; Ranganathan, S ; Collier, F ; Vuillermin, P (FRONTIERS MEDIA SA, 2022-09-21)BACKGROUND: Preclinical studies have shown that maternal gut microbiota during pregnancy play a key role in prenatal immune development but the relevance of these findings to humans is unknown. The aim of this prebirth cohort study was to investigate the association between the maternal gut microbiota in pregnancy and the composition of the infant's cord and peripheral blood immune cells over the first year of life. METHODS: The Barwon Infant Study cohort (n=1074 infants) was recruited using an unselected sampling frame. Maternal fecal samples were collected at 36 weeks of pregnancy and flow cytometry was conducted on cord/peripheral blood collected at birth, 6 and 12 months of age. Among a randomly selected sub-cohort with available samples (n=293), maternal gut microbiota was characterized by sequencing the 16S rRNA V4 region. Operational taxonomic units (OTUs) were clustered based on their abundance. Associations between maternal fecal microbiota clusters and infant granulocyte, monocyte and lymphocyte subsets were explored using compositional data analysis. Partial least squares (PLS) and regression models were used to investigate the relationships/associations between environmental, maternal and infant factors, and OTU clusters. RESULTS: We identified six clusters of co-occurring OTUs. The first two components in the PLS regression explained 39% and 33% of the covariance between the maternal prenatal OTU clusters and immune cell populations in offspring at birth. A cluster in which Dialister, Escherichia, and Ruminococcus were predominant was associated with a lower proportion of granulocytes (p=0.002), and higher proportions of both central naïve CD4+ T cells (CD4+/CD45RA+/CD31-) (p<0.001) and naïve regulatory T cells (Treg) (CD4+/CD45RA+/FoxP3low) (p=0.02) in cord blood. The association with central naïve CD4+ T cells persisted to 12 months of age. CONCLUSION: This birth cohort study provides evidence consistent with past preclinical models that the maternal gut microbiota during pregnancy plays a role in shaping the composition of innate and adaptive elements of the infant's immune system following birth.
-
ItemCrosstalk between epithelium, myeloid and innate lymphoid cells during gut homeostasis and disease.Ghilas, S ; O'Keefe, R ; Mielke, LA ; Raghu, D ; Buchert, M ; Ernst, M (Frontiers Media SA, 2022)The gut epithelium not only provides a physical barrier to separate a noxious outside from a sterile inside but also allows for highly regulated interactions between bacteria and their products, and components of the immune system. Homeostatic maintenance of an intact epithelial barrier is paramount to health, requiring an intricately regulated and highly adaptive response of various cells of the immune system. Prolonged homeostatic imbalance can result in chronic inflammation, tumorigenesis and inefficient antitumor immune control. Here we provide an update on the role of innate lymphoid cells, macrophages and dendritic cells, which collectively play a critical role in epithelial barrier maintenance and provide an important linkage between the classical innate and adaptive arm of the immune system. These interactions modify the capacity of the gut epithelium to undergo continuous renewal, safeguard against tumor formation and provide feedback to the gut microbiome, which acts as a seminal contributor to cellular homeostasis of the gut.
-
ItemImproving PARP inhibitor efficacy in high-grade serous ovarian carcinoma: A focus on the immune system.Bound, NT ; Vandenberg, CJ ; Kartikasari, AER ; Plebanski, M ; Scott, CL (Frontiers Media SA, 2022)High-grade serous ovarian carcinoma (HGSOC) is a genomically unstable malignancy responsible for over 70% of all deaths due to ovarian cancer. With roughly 50% of all HGSOC harboring defects in the homologous recombination (HR) DNA repair pathway (e.g., BRCA1/2 mutations), the introduction of poly ADP-ribose polymerase inhibitors (PARPi) has dramatically improved outcomes for women with HR defective HGSOC. By blocking the repair of single-stranded DNA damage in cancer cells already lacking high-fidelity HR pathways, PARPi causes the accumulation of double-stranded DNA breaks, leading to cell death. Thus, this synthetic lethality results in PARPi selectively targeting cancer cells, resulting in impressive efficacy. Despite this, resistance to PARPi commonly develops through diverse mechanisms, such as the acquisition of secondary BRCA1/2 mutations. Perhaps less well documented is that PARPi can impact both the tumour microenvironment and the immune response, through upregulation of the stimulator of interferon genes (STING) pathway, upregulation of immune checkpoints such as PD-L1, and by stimulating the production of pro-inflammatory cytokines. Whilst targeted immunotherapies have not yet found their place in the clinic for HGSOC, the evidence above, as well as ongoing studies exploring the synergistic effects of PARPi with immune agents, including immune checkpoint inhibitors, suggests potential for targeting the immune response in HGSOC. Additionally, combining PARPi with epigenetic-modulating drugs may improve PARPi efficacy, by inducing a BRCA-defective phenotype to sensitise resistant cancer cells to PARPi. Finally, invigorating an immune response during PARPi therapy may engage anti-cancer immune responses that potentiate efficacy and mitigate the development of PARPi resistance. Here, we will review the emerging PARPi literature with a focus on PARPi effects on the immune response in HGSOC, as well as the potential of epigenetic combination therapies. We highlight the potential of transforming HGSOC from a lethal to a chronic disease and increasing the likelihood of cure.
-
ItemSingle-cell RNA profiling of Plasmodium vivax-infected hepatocytes reveals parasite- and host- specific transcriptomic signatures and therapeutic targetsRuberto, AA ; Maher, SP ; Vantaux, A ; Joyner, CJ ; Bourke, C ; Balan, B ; Jex, A ; Mueller, I ; Witkowski, B ; Kyle, DE (FRONTIERS MEDIA SA, 2022-08-25)The resilience of Plasmodium vivax, the most widely-distributed malaria-causing parasite in humans, is attributed to its ability to produce dormant liver forms known as hypnozoites, which can activate weeks, months, or even years after an initial mosquito bite. The factors underlying hypnozoite formation and activation are poorly understood, as is the parasite's influence on the host hepatocyte. Here, we shed light on transcriptome-wide signatures of both the parasite and the infected host cell by sequencing over 1,000 P. vivax-infected hepatocytes at single-cell resolution. We distinguish between replicating schizonts and hypnozoites at the transcriptional level, identifying key differences in transcripts encoding for RNA-binding proteins associated with cell fate. In infected hepatocytes, we show that genes associated with energy metabolism and antioxidant stress response are upregulated, and those involved in the host immune response downregulated, suggesting both schizonts and hypnozoites alter the host intracellular environment. The transcriptional markers in schizonts, hypnozoites, and infected hepatocytes revealed here pinpoint potential factors underlying dormancy and can inform therapeutic targets against P. vivax liver-stage infection.
-
ItemComparison of actionable events detected in cancer genomes by whole-genome sequencing, in silico whole-exome and mutation panels.Ramarao-Milne, P ; Kondrashova, O ; Patch, A-M ; Nones, K ; Koufariotis, LT ; Newell, F ; Addala, V ; Lakis, V ; Holmes, O ; Leonard, C ; Wood, S ; Xu, Q ; Mukhopadhyay, P ; Naeini, MM ; Steinfort, D ; Williamson, JP ; Bint, M ; Pahoff, C ; Nguyen, PT ; Twaddell, S ; Arnold, D ; Grainge, C ; Basirzadeh, F ; Fielding, D ; Dalley, AJ ; Chittoory, H ; Simpson, PT ; Aoude, LG ; Bonazzi, VF ; Patel, K ; Barbour, AP ; Fennell, DA ; Robinson, BW ; Creaney, J ; Hollway, G ; Pearson, JV ; Waddell, N (Elsevier BV, 2022-08)BACKGROUND: Next-generation sequencing is used in cancer research to identify somatic and germline mutations, which can predict sensitivity or resistance to therapies, and may be a useful tool to reveal drug repurposing opportunities between tumour types. Multigene panels are used in clinical practice for detecting targetable mutations. However, the value of clinical whole-exome sequencing (WES) and whole-genome sequencing (WGS) for cancer care is less defined, specifically as the majority of variants found using these technologies are of uncertain significance. PATIENTS AND METHODS: We used the Cancer Genome Interpreter and WGS in 726 tumours spanning 10 cancer types to identify drug repurposing opportunities. We compare the ability of WGS to detect actionable variants, tumour mutation burden (TMB) and microsatellite instability (MSI) by using in silico down-sampled data to mimic WES, a comprehensive sequencing panel and a hotspot mutation panel. RESULTS: We reveal drug repurposing opportunities as numerous biomarkers are shared across many solid tumour types. Comprehensive panels identify the majority of approved actionable mutations, with WGS detecting more candidate actionable mutations for biomarkers currently in clinical trials. Moreover, estimated values for TMB and MSI vary when calculated from WGS, WES and panel data, and are dependent on whether all mutations or only non-synonymous mutations were used. Our results suggest that TMB and MSI thresholds should not only be tumour-dependent, but also be sequencing platform-dependent. CONCLUSIONS: There is a large opportunity to repurpose cancer drugs, and these data suggest that comprehensive sequencing is an invaluable source of information to guide clinical decisions by facilitating precision medicine and may provide a wealth of information for future studies. Furthermore, the sequencing and analysis approach used to estimate TMB may have clinical implications if a hard threshold is used to indicate which patients may respond to immunotherapy.
-
ItemThe escape of Candida albicans from macrophages is enabled by the fungal toxin candidalysin and two host cell death pathways.Olivier, FAB ; Hilsenstein, V ; Weerasinghe, H ; Weir, A ; Hughes, S ; Crawford, S ; Vince, JE ; Hickey, MJ ; Traven, A (Elsevier BV, 2022-09-20)The egress of Candida hyphae from macrophages facilitates immune evasion, but it also alerts macrophages to infection and triggers inflammation. To better define the mechanisms, here we develop an imaging assay to directly and dynamically quantify hyphal escape and correlate it to macrophage responses. The assay reveals that Candida escapes by using two pore-forming proteins to permeabilize macrophage membranes: the fungal toxin candidalysin and Nlrp3 inflammasome-activated Gasdermin D. Candidalysin plays a major role in escape, with Nlrp3 and Gasdermin D-dependent and -independent contributions. The inactivation of Nlrp3 does not reduce hyphal escape, and we identify ETosis via macrophage extracellular trap formation as an additional pathway facilitating hyphal escape. Suppressing hyphal escape does not reduce fungal loads, but it does reduce inflammatory activation. Our findings explain how Candida escapes from macrophages by using three strategies: permeabilizing macrophage membranes via candidalysin and engaging two host cell death pathways, Gasdermin D-mediated pyroptosis and ETosis.
-
ItemEmbigin is a fibronectin receptor that affects sebaceous gland differentiation and metabolism.Sipilä, K ; Rognoni, E ; Jokinen, J ; Tewary, M ; Vietri Rudan, M ; Talvi, S ; Jokinen, V ; Dahlström, KM ; Liakath-Ali, K ; Mobasseri, A ; Du-Harpur, X ; Käpylä, J ; Nutt, SL ; Salminen, TA ; Heino, J ; Watt, FM (Elsevier BV, 2022-06-20)Stem cell renewal and differentiation are regulated by interactions with the niche. Although multiple cell populations have been identified in distinct anatomical compartments, little is known about niche-specific molecular factors. Using skin as a model system and combining single-cell RNA-seq data analysis, immunofluorescence, and transgenic mouse models, we show that the transmembrane protein embigin is specifically expressed in the sebaceous gland and that the number of embigin-expressing cells is negatively regulated by Wnt. The loss of embigin promotes exit from the progenitor compartment and progression toward differentiation, and also compromises lipid metabolism. Embigin modulates sebaceous niche architecture by affecting extracellular matrix organization and basolateral targeting of monocarboxylate transport. We discover through ligand screening that embigin is a direct fibronectin receptor, binding to the N-terminal fibronectin domain without impairing integrin function. Our results solve the long-standing question of how embigin regulates cell adhesion and demonstrate a mechanism that couples adhesion and metabolism.