Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Tissue-resident memory T cells from a metastatic vaginal melanoma patient are tumor-responsive T cells and increase after anti-PD-1 treatment
    Pizzolla, A ; Keam, SP ; Vergara, IA ; Caramia, F ; Thio, N ; Wang, M ; Kocovski, N ; Tantalo, D ; Jabbari, J ; Au-Yeung, G ; Sandhu, S ; Gyorki, DE ; Weppler, A ; Perdicchio, M ; McArthur, GA ; Papenfuss, AT ; Neeson, PJ (BMJ PUBLISHING GROUP, 2022-05)
    BACKGROUND: Vaginal melanoma (VM) is a rare cancer and has a poor response to immune checkpoint blockade (ICB). CD8+Tissue Resident Memory (TRM) T cells proliferate in response to ICB and correlate with longer survival in metastatic cutaneous melanoma. However, their capacity to respond to VM and their neoantigens is not known. METHODS: Using longitudinal samples, we explored the evolution of VM mutations by whole-exome sequencing and RNAseq, we also defined the immune context using multiplex immunohistochemistry and nanostring pan cancer immune profile. Then using fresh single cell suspensions of the metastatic samples, we explored VM T cells via mass cytometry and single cell RNAseq and T cell receptor sequencing (TCRseq). Finally, we investigated TRM, pre-TRM and exhausted T cell function against melanoma neo-antigens and melanoma differentiation antigens in vitro. RESULTS: Primary VM was non-inflamed and devoid of CD8+ TRM cells. In contrast, both metastases showed proliferating CD8+ TRM were clustered at the tumor margin, with increased numbers in the second ICB-refractory metastasis. The first metastasis showed dense infiltration of CD8+ T cells, the second showed immune exclusion with loss of melanoma cell Major histocompatibility complex (MHC)-I expression associated with downregulation of antigen presentation pathway gene expression. CD8+ TRM from both metastases responded to autologous melanoma cells more robustly than all other CD8+ T cell subsets. In addition, CD8+ TRM shared TCR clones across metastases, suggesting a response to common antigens, which was supported by recognition of the same neoantigen by expanded tumor infiltrating lymphocytes. CONCLUSIONS: In this study, we identified TRM clusters in VM metastases from a patient, but not primary disease. We showed TRM location at the tumor margin, and their superior functional response to autologous tumor cells, predicted neoantigens and melanoma differentiation antigens. These CD8+ TRM exhibited the highest tumor-responsive potential and shared their TCR with tumor-infiltrating effector memory T cells. This suggests VM metastases from this patient retain strong antitumor T cell functional responses; however, this response is suppressed in vivo. The loss of VG MHC-I expression is a common immune escape mechanism which was not addressed by anti-PD-1 monotherapy; rather an additional targeted approach to upregulate MHC-I expression is required.
  • Item
    Thumbnail Image
    Pizzolla, A ; Keam, S ; Vergara, I ; Caramia, F ; Wang, M ; Kocovski, N ; ThuNgoc, N ; Macdonald, S ; Tantalo, D ; Petrone, P ; Yeang, HXA ; Gyorki, D ; Weppler, A ; Au-Yeung, G ; Sandhu, S ; Perdicchio, M ; McArthur, G ; Papenfuss, T ; Neeson, P (BMJ PUBLISHING GROUP, 2020-11-01)
    Background Mucosal melanoma is a rare subtype of melanoma originating from mucosal tissues (1), metastases are very aggressive and respond poorly to therapy, including immune checkpoint inhibitors (ICI) such as anti-CTLA4 and anti-PD1 antibodies (2–5). CD8+ T cells constitute the most abundant immune infiltrate in metastatic melanoma, of which the Tissue Resident Memory subset (TRM) is of particular interest (6). CD8+ TRM cells express the highest levels of immune checkpoint receptors, proliferate in response to ICI and correlate with longer disease-free and overall survival (6–8). The immune landscape in mucosal melanoma remains poorly characterized. We aimed to: 1) phenotype CD8+ T cells and TRM infiltrating metastatic mucosal melanoma, 2) characterize the clonality of TRM in relation to other CD8+ T cell subsets and 3) define the capacity of CD8+ T cells and TRM to respond to melanoma cells and to in vivo and in vitro anti-PD1 treatment. Methods We investigated the CD8+ T and TRM cells infiltrating two temporally- and spatially-distant subcutaneous metastases, these originated from a primary vaginal mucosal melanoma. One metastasis was excised prior to anti-PD1 treatment and one was anti-PD1 refractory, having progressed on treatment. We used mass cytometry and single-cell RNA and TCR sequencing to characterise the phenotype and clonality of the T cells, multiplex immunohistochemistry to define their spatial relationship with tumour cells and other T cells, and functional assays to determine TRM response to tumour cells (figure 1). Results CD8+ TRM frequency increased with time and anti-PD1 treatment, forming clusters at the tumour margin. T cells in the anti-PD1 refractory lesion were more activated than T cells in the first tumour and were bound by anti-PD1 antibody in vivo. T cells could not be stimulated by anti-PD1 directly ex vivo. Both metastatic lesions shared common T cell clusters including TRM. Furthermore, TRM in each tumour shared T cell clones, suggesting the presence of common antigens between metastatic sites. Indeed, the two metastases had a similar mutational profile. In vitro expanded tumour infiltrating lymphocytes from both lesions recognized tumour cells from both lesions and the same neoantigen generated from a single point mutation in the gene CDKN1C. Finally, tumour cells stimulated TRM cells more robustly than other T cells subsets. Abstract 548 Figure 1Graphical depiction of the methods used to characterise T cells in mucosal metastatic melanoma Conclusions In this patient with vaginal mucosal melanoma, subsequent melanoma metastases of clonal origin attracted CD8+ T cells of similar specificity, among which TRM cells responded more vigorously to tumour cells than other T cells subsets. Acknowledgements The authors would like to acknowledge imCORE La Hoffmann- Roche Ltd. for funding. Ethics Approval Patients diagnosed with stage 3 or 4 metastatic melanoma and undergoing clinically indicated surgery were enrolled in prospective studies approved by the Peter MacCallum Cancer Centre human ethics research committee (13/141). All experimental protocols have been approved and clinical data has been collected prospectively. References Carvajal RD, Hamid O, Ariyan C. Mucosal Melanoma. [cited 2020 Apr 1]; Available from: Del Vecchio M, Di Guardo L, Ascierto PA, Grimaldi AM, Sileni VC, Pigozzo J, et al. Efficacy and safety of ipilimumab 3 mg/kg in patients with pretreated, metastatic, mucosal melanoma. Eur J Cancer Oxf Engl 1990; 2014 Jan;50(1):121–7. Postow MA, Luke JJ, Bluth MJ, Ramaiya N, Panageas KS, Lawrence DP, et al. Ipilimumab for patients with advanced mucosal melanoma. The Oncologist 2013 Jun;18(6):726–32. D’Angelo SP, Larkin J, Sosman JA, Lebbé C, Brady B, Neyns B, et al. Efficacy and safety of nivolumab alone or in combination with ipilimumab in patients with mucosal melanoma: a pooled analysis. J Clin Oncol Off J Am Soc Clin Oncol. 2017 Jan 10;35(2):226–35. Hamid O, Robert C, Ribas A, Hodi FS, Walpole E, Daud A, et al. Antitumour activity of pembrolizumab in advanced mucosal melanoma: a post-hoc analysis of KEYNOTE-001, 002, 006. Br J Cancer 2018;119(6):670–4. Boddupalli CS, Bar N, Kadaveru K, Krauthammer M, Pornputtapong N, Mai Z, et al. Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells. JCI Insight [Internet]. 2016 Dec 22 [cited 2019 Apr 24];1(21). Available from: Edwards J, Wilmott JS, Madore J, Gide TN, Quek C, Tasker A, et al. CD103+ Tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment. Clin Cancer Res Off J Am Assoc Cancer Res 2018 Jul 1;24(13):3036–45. Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 2018 Jul;24(7):986–93.