Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    MDM4 is a rational target for treating breast cancers with mutant p53
    Miranda, PJ ; Buckley, D ; Raghu, D ; Pang, J-MB ; Takano, EA ; Vijayakumaran, R ; Teunisse, AFAS ; Posner, A ; Procter, T ; Herold, MJ ; Gamell, C ; Marine, J-C ; Fox, SB ; Jochemsen, A ; Haupt, S ; Haupt, Y (WILEY, 2017-04)
  • Item
    Thumbnail Image
    A non-canonical function of Ezh2 preserves immune homeostasis
    Vasanthakumar, A ; Xu, D ; Lun, ATL ; Kueh, AJ ; van Gisbergen, KPJM ; Iannarella, N ; Li, X ; Yu, L ; Wang, D ; Williams, BRG ; Lee, SCW ; Majewski, IJ ; Godfrey, DI ; Smyth, GK ; Alexander, WS ; Herold, MJ ; Kallies, A ; Nutt, SL ; Allan, RS (WILEY, 2017-04)
    Enhancer of zeste 2 (Ezh2) mainly methylates lysine 27 of histone-H3 (H3K27me3) as part of the polycomb repressive complex 2 (PRC2) together with Suz12 and Eed. However, Ezh2 can also modify non-histone substrates, although it is unclear whether this mechanism has a role during development. Here, we present evidence for a chromatin-independent role of Ezh2 during T-cell development and immune homeostasis. T-cell-specific depletion of Ezh2 induces a pronounced expansion of natural killer T (NKT) cells, although Ezh2-deficient T cells maintain normal levels of H3K27me3. In contrast, removal of Suz12 or Eed destabilizes canonical PRC2 function and ablates NKT cell development completely. We further show that Ezh2 directly methylates the NKT cell lineage defining transcription factor PLZF, leading to its ubiquitination and subsequent degradation. Sustained PLZF expression in Ezh2-deficient mice is associated with the expansion of a subset of NKT cells that cause immune perturbation. Taken together, we have identified a chromatin-independent function of Ezh2 that impacts on the development of the immune system.
  • Item
    Thumbnail Image
    CRISPR/Cas9-The ultimate weapon to battle infectious diseases?
    Doerflinger, M ; Forsyth, W ; Ebert, G ; Pellegrini, M ; Herold, MJ (WILEY-HINDAWI, 2017-02)
    Infectious diseases are a leading cause of death worldwide. Novel therapeutics are urgently required to treat multidrug-resistant organisms such as Mycobacterium tuberculosis and to mitigate morbidity and mortality caused by acute infections such as malaria and dengue fever virus as well as chronic infections such as human immunodeficiency virus-1 and hepatitis B virus. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, which has revolutionized biomedical research, holds great promise for the identification and validation of novel drug targets. Since its discovery as an adaptive immune system in prokaryotes, the CRISPR/Cas9 system has been developed into a multi-faceted genetic modification tool, which can now be used to induce gene deletions or specific gene insertions, such as conditional alleles or endogenous reporters in virtually any organism. The generation of CRISPR/Cas9 libraries that can be used to perform phenotypic whole genome screens provides an important new tool that will aid in the identification of critical host factors involved in the pathogenesis of infectious diseases. In this review, we will discuss the development and recent applications of the CRISPR/Cas9 system used to identify novel regulators, which might become important in the fight against infectious diseases.
  • Item
    Thumbnail Image
    CRISPR/Cas9: A tool for immunological research
    Hochheiser, K ; Kueh, AJ ; Gebhardt, T ; Herold, MJ (WILEY, 2018-04)
    The CRISPR/Cas9-system was originally identified as part of the adaptive immune system in bacteria and has since been adapted for the genetic manipulation of eukaryotic cells. The technique is of particular value for biomedical sciences, as it enables the genetic manipulation of cell lines and primary cells as well as whole organisms with unprecedented ease and efficiency. Furthermore, the CRISPR/Cas9-technology has the potential for future therapeutic applications in the clinic. Here, we discuss the use of CRISPR/Cas9 for the genetic modification of haematopoietic cells and the generation of mouse models for immunological research. Additionally, we explain how the technique can be applied as a screening-tool to identify genes involved in different immunological processes. Moreover, we will talk about recent extensions of using the CRISPR/Cas9 technology, such as a transcriptional activator or repressor. Finally, we discuss the first clinical trials that use CRISPR/Cas9 and discuss potential future applications.
  • Item
    Thumbnail Image
    A point mutation in the Ncr1 signal peptide impairs the development of innate lymphoid cell subsets
    Almeida, FF ; Tognarelli, S ; Marcais, A ; Kueh, AJ ; Friede, ME ; Liao, Y ; Willis, SN ; Luong, K ; Faure, F ; Mercier, FE ; Galluso, J ; Firth, M ; Narni-Mancinelli, E ; Rais, B ; Scadden, DT ; Spallotta, F ; Weil, S ; Giannattasio, A ; Kalensee, F ; Zoeller, T ; Huntington, ND ; Schleicher, U ; Chiocchetti, AG ; Ugolini, S ; Herold, MJ ; Shi, W ; Koch, J ; Steinle, A ; Vivier, E ; Walzer, T ; Belz, GT ; Ullrich, E (TAYLOR & FRANCIS INC, 2018)
    NKp46 (CD335) is a surface receptor shared by both human and mouse natural killer (NK) cells and innate lymphoid cells (ILCs) that transduces activating signals necessary to eliminate virus-infected cells and tumors. Here, we describe a spontaneous point mutation of cysteine to arginine (C14R) in the signal peptide of the NKp46 protein in congenic Ly5.1 mice and the newly generated NCRB6C14R strain. Ly5.1C14R NK cells expressed similar levels of Ncr1 mRNA as C57BL/6, but showed impaired surface NKp46 and reduced ability to control melanoma tumors in vivo. Expression of the mutant NKp46C14R in 293T cells showed that NKp46 protein trafficking to the cell surface was compromised. Although Ly5.1C14R mice had normal number of NK cells, they showed an increased number of early maturation stage NK cells. CD49a+ILC1s were also increased but these cells lacked the expression of TRAIL. ILC3s that expressed NKp46 were not detectable and were not apparent when examined by T-bet expression. Thus, the C14R mutation reveals that NKp46 is important for NK cell and ILC differentiation, maturation and function. Significance Innate lymphoid cells (ILCs) play important roles in immune protection. Various subsets of ILCs express the activating receptor NKp46 which is capable of recognizing pathogen derived and tumor ligands and is necessary for immune protection. Here, we describe a spontaneous point mutation in the signal peptide of the NKp46 protein in congenic Ly5.1 mice which are widely used for tracking cells in vivo. This Ncr1 C14R mutation impairs NKp46 surface expression resulting in destabilization of Ncr1 and accumulation of NKp46 in the endoplasmic reticulum. Loss of stable NKp46 expression impaired the maturation of NKp46+ ILCs and altered the expression of TRAIL and T-bet in ILC1 and ILC3, respectively.
  • Item
    Thumbnail Image
    GM-CSF Quantity Has a Selective Effect on Granulocytic vs. Monocytic Myeloid Development and Function
    Sun, L ; Rautela, J ; Delconte, RB ; Souza-Fonseca-Guimaraes, F ; Carrington, EM ; Schenk, RL ; Herold, MJ ; Huntington, ND ; Lew, AM ; Xu, Y ; Zhan, Y (FRONTIERS MEDIA SA, 2018-08-28)
    GM-CSF promotes myeloid differentiation of cultured bone marrow cells into cells of the granulocytic and monocytic lineage; the latter can further differentiate into monocytes/macrophages and dendritic cells. How GM-CSF selects for these different myeloid fates is unresolved. GM-CSF levels can change either iatrogenically (e.g., augmenting leukopoiesis after radiotherapy) or naturally (e.g., during infection or inflammation) resulting in different immunological outcomes. Therefore, we asked whether the dose of GM-CSF may regulate the development of three types of myeloid cells. Here, we showed that GM-CSF acted as a molecular rheostat where the quantity determined which cell type was favored; moreover, the cellular process by which this was achieved was different for each cell type. Thus, low quantities of GM-CSF promoted the granulocytic lineage, mainly through survival. High quantities promoted the monocytic lineage, mainly through proliferation, whereas moderate quantities promoted moDCs, mainly through differentiation. Finally, we demonstrated that monocytes/macrophages generated with different doses of GM-CSF differed in function. We contend that this selective effect of GM-CSF dose on myeloid differentiation and function should be taken into consideration during pathophysiological states that may alter GM-CSF levels and during GM-CSF agonistic or antagonistic therapy.
  • Item
    Thumbnail Image
    Mining the Plasma Cell Transcriptome for Novel Cell Surface Proteins
    Trezise, S ; Karnowski, A ; Fedele, PL ; Mithraprabhu, S ; Liao, Y ; D'Costa, K ; Kueh, AJ ; Hardy, MP ; Owczarek, CM ; Herold, MJ ; Spencer, A ; Shi, W ; Willis, SN ; Nutt, SL ; Corcoran, LM (MDPI AG, 2018-08-01)
    Antibody Secreting Cells (ASCs) are a fundamental component of humoral immunity, however, deregulated or excessive antibody production contributes to the pathology of autoimmune diseases, while transformation of ASCs results in the malignancy Multiple Myeloma (MM). Despite substantial recent improvements in treating these conditions, there is as yet no widely used ASC-specific therapeutic approach, highlighting a critical need to identify novel methods of targeting normal and malignant ASCs. Surface molecules specifically expressed by the target cell population represent ideal candidates for a monoclonal antibody-based therapy. By interrogating the ASC gene signature that we previously defined we identified three surface proteins, Plpp5, Clptm1l and Itm2c, which represent potential targets for novel MM treatments. Plpp5, Clptm1l and Itm2c are highly and selectively expressed by mouse and human ASCs as well as MM cells. To investigate the function of these proteins within the humoral immune system we have generated three novel mouse strains, each carrying a loss-of-function mutation in either Plpp5, Clptm1l or Itm2c. Through analysis of these novel strains, we have shown that Plpp5, Clptm1l and Itm2c are dispensable for the development, maturation and differentiation of B-lymphocytes, and for the production of antibodies by ASCs. As adult mice lacking either protein showed no apparent disease phenotypes, it is likely that targeting these molecules on ASCs will have minimal on-target adverse effects.
  • Item
    Thumbnail Image
    Mutually exclusive regulation of T cell survival by IL-7R and antigen receptor-induced signals
    Koenen, P ; Heinzel, S ; Carrington, EM ; Happo, L ; Alexander, WS ; Zhang, J-G ; Herold, MJ ; Scott, CL ; Lew, AM ; Strasser, A ; Hodgkin, PD (NATURE PUBLISHING GROUP, 2013-04)
    Two major processes govern T cell proliferation and survival: interleukin-7-mediated homeostasis and antigen-induced selection. How cells transit between the two states is unknown. Here we show that T cell receptor ligation actively inhibits homeostatic survival signals while initiating a new, dominant survival programme. This switch is mediated by a change in the expression of pro- and anti-apoptosis proteins through the downregulation of Bcl-2 and the induction of Bim, A1 and Bcl-xL. Calcineurin inhibitors prevent the initiation of the new survival programme, while permitting the dominant repression of Bcl-2. Thus, in the presence of these drugs the response to antigen receptor ligation is cell death. Our results identify a molecular switch that can serve as an attractive target for inducing antigen-specific tolerance in treating autoimmune disease patients and transplant recipients.
  • Item
    Thumbnail Image
    Impact of conditional deletion of the pro-apoptotic BCL-2 family member BIM in mice
    Herold, MJ ; Stuchbery, R ; Merino, D ; Willson, T ; Strasser, A ; Hildeman, D ; Bouillet, P (NATURE PUBLISHING GROUP, 2014-10)
    The pro-apoptotic BH3-only BCL-2 family member BIM is a critical determinant of hematopoietic cell development and homeostasis. It has been argued that the striking hematopoietic abnormalities of BIM-deficient mice (accumulation of lymphocytes and granulocytes) may be the result of the loss of the protein throughout the whole animal rather than a consequence intrinsic to the loss of BIM in hematopoietic cells. To address this issue and allow the deletion of BIM in specific cell types in future studies, we have developed a mouse strain with a conditional Bim allele as well as a new Cre transgenic strain, Vav-CreER, in which the tamoxifen-inducible CreER recombinase (fusion protein) is predominantly expressed in the hematopoietic system. We show that acute loss of BIM in the adult mouse rapidly results in the hematopoietic phenotypes previously observed in mice lacking BIM in all tissues. This includes changes in thymocyte subpopulations, increased white blood cell counts and resistance of lymphocytes to BIM-dependent apoptotic stimuli, such as cytokine deprivation. We have validated this novel conditional Bim knockout mouse model using established and newly developed CreER strains (Rosa26-CreER and Vav-CreER) and will make these exciting new tools for studies on cell death and cancer available.
  • Item
    Thumbnail Image
    Evidence against upstream regulation of the unfolded protein response (UPR) by pro-apoptotic BIM and PUMA
    Herold, MJ ; O'Reilly, LA ; Lin, A ; Srivastava, R ; Doerflinger, M ; Bouillet, P ; Strasser, A ; Puthalakath, H (NATURE PUBLISHING GROUP, 2014-07)