Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Pathogenic Variants in GPC4 Cause Keipert Syndrome
    Amor, DJ ; Stephenson, SEM ; Mustapha, M ; Mensah, MA ; Ockeloen, CW ; Lee, WS ; Tankard, RM ; Phelan, DG ; Shinawi, M ; de Brouwer, APM ; Pfundt, R ; Dowling, C ; Toler, TL ; Sutton, VR ; Agolini, E ; Rinelli, M ; Capolino, R ; Martinelli, D ; Zampino, G ; Dumic, M ; Reardon, W ; Shaw-Smith, C ; Leventer, RJ ; Delatycki, MB ; Kleefstra, T ; Mundlos, S ; Mortier, G ; Bahlo, M ; Allen, NJ ; Lockhart, PJ (CELL PRESS, 2019-05-02)
    Glypicans are a family of cell-surface heparan sulfate proteoglycans that regulate growth-factor signaling during development and are thought to play a role in the regulation of morphogenesis. Whole-exome sequencing of the Australian family that defined Keipert syndrome (nasodigitoacoustic syndrome) identified a hemizygous truncating variant in the gene encoding glypican 4 (GPC4). This variant, located in the final exon of GPC4, results in premature termination of the protein 51 amino acid residues prior to the stop codon, and in concomitant loss of functionally important N-linked glycosylation (Asn514) and glycosylphosphatidylinositol (GPI) anchor (Ser529) sites. We subsequently identified seven affected males from five additional kindreds with novel and predicted pathogenic variants in GPC4. Segregation analysis and X-inactivation studies in carrier females provided supportive evidence that the GPC4 variants caused the condition. Furthermore, functional studies of recombinant protein suggested that the truncated proteins p.Gln506∗ and p.Glu496∗ were less stable than the wild type. Clinical features of Keipert syndrome included a prominent forehead, a flat midface, hypertelorism, a broad nose, downturned corners of mouth, and digital abnormalities, whereas cognitive impairment and deafness were variable features. Studies of Gpc4 knockout mice showed evidence of the two primary features of Keipert syndrome: craniofacial abnormalities and digital abnormalities. Phylogenetic analysis demonstrated that GPC4 is most closely related to GPC6, which is associated with a bone dysplasia that has a phenotypic overlap with Keipert syndrome. Overall, we have shown that pathogenic variants in GPC4 cause a loss of function that results in Keipert syndrome, making GPC4 the third human glypican to be linked to a genetic syndrome.
  • Item
    Thumbnail Image
    Neuropathology of childhood-onset basal ganglia degeneration caused by mutation of VAC14
    Stutterd, C ; Diakumis, P ; Bahlo, M ; Fernandez, MF ; Leventer, RJ ; Delatycki, M ; Amor, D ; Chow, CW ; Stephenson, S ; Meisler, MH ; Mclean, C ; Lockhart, PJ (WILEY, 2017-12)
    OBJECTIVE: To characterize the clinical features and neuropathology associated with recessive VAC14 mutations. METHODS: Whole-exome sequencing was used to identify the genetic etiology of a rapidly progressive neurological disease presenting in early childhood in two deceased siblings with distinct neuropathological features on post mortem examination. RESULTS: We identified compound heterozygous variants in VAC14 in two deceased siblings with early childhood onset of severe, progressive dystonia, and neurodegeneration. Their clinical phenotype is consistent with the VAC14-related childhood-onset, striatonigral degeneration recently described in two unrelated children. Post mortem examination demonstrated prominent vacuolation associated with degenerating neurons in the caudate nucleus, putamen, and globus pallidus, similar to previously reported ex vivo vacuoles seen in the late-endosome/lysosome of VAC14-deficient neurons. We identified upregulation of ubiquitinated granules within the cell cytoplasm and lysosomal-associated membrane protein (LAMP2) around the vacuole edge to suggest a process of vacuolation of lysosomal structures associated with active autophagocytic-associated neuronal degeneration. INTERPRETATION: Our findings reveal a distinct clinicopathological phenotype associated with recessive VAC14 mutations.
  • Item
    Thumbnail Image
    Recent advances in the detection of repeat expansions with short-read next-generation sequencing.
    Bahlo, M ; Bennett, MF ; Degorski, P ; Tankard, RM ; Delatycki, MB ; Lockhart, PJ (F1000 Research Ltd, 2018)
    Short tandem repeats (STRs), also known as microsatellites, are commonly defined as consisting of tandemly repeated nucleotide motifs of 2-6 base pairs in length. STRs appear throughout the human genome, and about 239,000 are documented in the Simple Repeats Track available from the UCSC (University of California, Santa Cruz) genome browser. STRs vary in size, producing highly polymorphic markers commonly used as genetic markers. A small fraction of STRs (about 30 loci) have been associated with human disease whereby one or both alleles exceed an STR-specific threshold in size, leading to disease. Detection of repeat expansions is currently performed with polymerase chain reaction-based assays or with Southern blots for large expansions. The tests are expensive and time-consuming and are not always conclusive, leading to lengthy diagnostic journeys for patients, potentially including missed diagnoses. The advent of whole exome and whole genome sequencing has identified the genetic cause of many genetic disorders; however, analysis pipelines are focused primarily on the detection of short nucleotide variations and short insertions and deletions (indels). Until recently, repeat expansions, with the exception of the smallest expansion (SCA6), were not detectable in next-generation short-read sequencing datasets and would have been ignored in most analyses. In the last two years, four analysis methods with accompanying software (ExpansionHunter, exSTRa, STRetch, and TREDPARSE) have been released. Although a comprehensive comparative analysis of the performance of these methods across all known repeat expansions is still lacking, it is clear that these methods are a valuable addition to any existing analysis pipeline. Here, we detail how to assess short-read data for evidence of expansions, reviewing all four methods and outlining their strengths and weaknesses. Implementation of these methods should lead to increased diagnostic yield of repeat expansion disorders for known STR loci and has the potential to detect novel repeat expansions.
  • Item
    Thumbnail Image
    Bioinformatics-Based Identification of Expanded Repeats: A Non-reference Intronic Pentamer Expansion in RFC1 Causes CANVAS
    Rafehi, H ; Szmulewicz, DJ ; Bennett, MF ; Sobreira, NLM ; Pope, K ; Smith, KR ; Gillies, G ; Diakumis, P ; Dolzhenko, E ; Eberle, MA ; Garcia Barcina, M ; Breen, DP ; Chancellor, AM ; Cremer, PD ; Delatycki, MB ; Fogel, BL ; Hackett, A ; Halmagyi, GM ; Kapetanovic, S ; Lang, A ; Mossman, S ; Mu, W ; Patrikios, P ; Perlman, SL ; Rosemergy, I ; Storey, E ; Watson, SRD ; Wilson, MA ; Zee, DS ; Valle, D ; Amor, DJ ; Bahlo, M ; Lockhart, PJ (CELL PRESS, 2019-07-03)
    Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders.