Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Tissue-resident memory T cells from a metastatic vaginal melanoma patient are tumor-responsive T cells and increase after anti-PD-1 treatment
    Pizzolla, A ; Keam, SP ; Vergara, IA ; Caramia, F ; Thio, N ; Wang, M ; Kocovski, N ; Tantalo, D ; Jabbari, J ; Au-Yeung, G ; Sandhu, S ; Gyorki, DE ; Weppler, A ; Perdicchio, M ; McArthur, GA ; Papenfuss, AT ; Neeson, PJ (BMJ PUBLISHING GROUP, 2022-05)
    BACKGROUND: Vaginal melanoma (VM) is a rare cancer and has a poor response to immune checkpoint blockade (ICB). CD8+Tissue Resident Memory (TRM) T cells proliferate in response to ICB and correlate with longer survival in metastatic cutaneous melanoma. However, their capacity to respond to VM and their neoantigens is not known. METHODS: Using longitudinal samples, we explored the evolution of VM mutations by whole-exome sequencing and RNAseq, we also defined the immune context using multiplex immunohistochemistry and nanostring pan cancer immune profile. Then using fresh single cell suspensions of the metastatic samples, we explored VM T cells via mass cytometry and single cell RNAseq and T cell receptor sequencing (TCRseq). Finally, we investigated TRM, pre-TRM and exhausted T cell function against melanoma neo-antigens and melanoma differentiation antigens in vitro. RESULTS: Primary VM was non-inflamed and devoid of CD8+ TRM cells. In contrast, both metastases showed proliferating CD8+ TRM were clustered at the tumor margin, with increased numbers in the second ICB-refractory metastasis. The first metastasis showed dense infiltration of CD8+ T cells, the second showed immune exclusion with loss of melanoma cell Major histocompatibility complex (MHC)-I expression associated with downregulation of antigen presentation pathway gene expression. CD8+ TRM from both metastases responded to autologous melanoma cells more robustly than all other CD8+ T cell subsets. In addition, CD8+ TRM shared TCR clones across metastases, suggesting a response to common antigens, which was supported by recognition of the same neoantigen by expanded tumor infiltrating lymphocytes. CONCLUSIONS: In this study, we identified TRM clusters in VM metastases from a patient, but not primary disease. We showed TRM location at the tumor margin, and their superior functional response to autologous tumor cells, predicted neoantigens and melanoma differentiation antigens. These CD8+ TRM exhibited the highest tumor-responsive potential and shared their TCR with tumor-infiltrating effector memory T cells. This suggests VM metastases from this patient retain strong antitumor T cell functional responses; however, this response is suppressed in vivo. The loss of VG MHC-I expression is a common immune escape mechanism which was not addressed by anti-PD-1 monotherapy; rather an additional targeted approach to upregulate MHC-I expression is required.
  • Item
    Thumbnail Image
    Characterization of the treatment-naive immune microenvironment in melanoma with BRAF mutation
    Wang, M ; Zadeh, S ; Pizzolla, A ; Thia, K ; Gyorki, DE ; McArthur, GA ; Scolyer, RA ; Long, G ; Wilmott, JS ; Andrews, MC ; Au-Yeung, G ; Weppler, A ; Sandhu, S ; Trapani, JA ; Davis, MJ ; Neeson, PJ (BMJ PUBLISHING GROUP, 2022-04)
    BACKGROUND: Patients with BRAF-mutant and wild-type melanoma have different response rates to immune checkpoint blockade therapy. However, the reasons for this remain unknown. To address this issue, we investigated the precise immune composition resulting from BRAF mutation in treatment-naive melanoma to determine whether this may be a driver for different response to immunotherapy. METHODS: In this study, we characterized the treatment-naive immune context in patients with BRAF-mutant and BRAF wild-type (BRAF-wt) melanoma using data from single-cell RNA sequencing, bulk RNA sequencing, flow cytometry and immunohistochemistry (IHC). RESULTS: In single-cell data, BRAF-mutant melanoma displayed a significantly reduced infiltration of CD8+ T cells and macrophages but also increased B cells, natural killer (NK) cells and NKT cells. We then validated this finding using bulk RNA-seq data from the skin cutaneous melanoma cohort in The Cancer Genome Atlas and deconvoluted the data using seven different algorithms. Interestingly, BRAF-mutant tumors had more CD4+ T cells than BRAF-wt samples in both primary and metastatic cohorts. In the metastatic cohort, BRAF-mutant melanoma demonstrated more B cells but less CD8+ T cell infiltration when compared with BRAF-wt samples. In addition, we further investigated the immune cell infiltrate using flow cytometry and multiplex IHC techniques. We confirmed that BRAF-mutant melanoma metastases were enriched for CD4+ T cells and B cells and had a co-existing decrease in CD8+ T cells. Furthermore, we then identified B cells were associated with a trend for improved survival (p=0.078) in the BRAF-mutant samples and Th2 cells were associated with prolonged survival in the BRAF-wt samples. CONCLUSIONS: In conclusion, treatment-naive BRAF-mutant melanoma has a distinct immune context compared with BRAF-wt melanoma, with significantly decreased CD8+ T cells and increased B cells and CD4+ T cells in the tumor microenvironment. These findings indicate that further mechanistic studies are warranted to reveal how this difference in immune context leads to improved outcome to combination immune checkpoint blockade in BRAF-mutant melanoma.
  • Item
    Thumbnail Image
    Melanoma brain metastases that progress on BRAF-MEK inhibitors demonstrate resistance to ipilimumab-nivolumab that is associated with the Innate PD-1 Resistance Signature (IPRES)
    Lau, PKH ; Feran, B ; Smith, L ; Lasocki, A ; Molania, R ; Smith, K ; Weppler, A ; Angel, C ; Kee, D ; Bhave, P ; Lee, B ; Young, RJ ; Iravani, A ; Yeang, HA ; Vergara, IA ; Kok, D ; Drummond, K ; Neeson, PJ ; Sheppard, KE ; Papenfuss, T ; Solomon, BJ ; Sandhu, S ; McArthur, GA (BMJ PUBLISHING GROUP, 2021-10)
    BACKGROUND: Melanoma brain metastases (MBMs) are a challenging clinical problem with high morbidity and mortality. Although first-line dabrafenib-trametinib and ipilimumab-nivolumab have similar intracranial response rates (50%-55%), central nervous system (CNS) resistance to BRAF-MEK inhibitors (BRAF-MEKi) usually occurs around 6 months, and durable responses are only seen with combination immunotherapy. We sought to investigate the utility of ipilimumab-nivolumab after MBM progression on BRAF-MEKi and identify mechanisms of resistance. METHODS: Patients who received first-line ipilimumab-nivolumab for MBMs or second/third line ipilimumab-nivolumab for intracranial metastases with BRAFV600 mutations with prior progression on BRAF-MEKi and MRI brain staging from March 1, 2015 to June 30, 2018 were included. Modified intracranial RECIST was used to assess response. Formalin-fixed paraffin-embedded samples of BRAFV600 mutant MBMs that were naïve to systemic treatment (n=18) or excised after progression on BRAF-MEKi (n=14) underwent whole transcriptome sequencing. Comparative analyses of MBMs naïve to systemic treatment versus BRAF-MEKi progression were performed. RESULTS: Twenty-five and 30 patients who received first and second/third line ipilimumab-nivolumab, were included respectively. Median sum of MBM diameters was 13 and 20.5 mm for the first and second/third line ipilimumab-nivolumab groups, respectively. Intracranial response rate was 75.0% (12/16), and median progression-free survival (PFS) was 41.6 months for first-line ipilimumab-nivolumab. Efficacy of second/third line ipilimumab-nivolumab after BRAF-MEKi progression was poor with an intracranial response rate of 4.8% (1/21) and median PFS of 1.3 months. Given the poor activity of ipilimumab-nivolumab after BRAF-MEKi MBM progression, we performed whole transcriptome sequencing to identify mechanisms of drug resistance. We identified a set of 178 differentially expressed genes (DEGs) between naïve and MBMs with progression on BRAF-MEKi treatment (p value <0.05, false discovery rate (FDR) <0.1). No distinct pathways were identified from gene set enrichment analyses using Kyoto Encyclopedia of Genes and Genomes, Gene Ontogeny or Hallmark libraries; however, enrichment of DEG from the Innate Anti-PD1 Resistance Signature (IPRES) was identified (p value=0.007, FDR=0.03). CONCLUSIONS: Second-line ipilimumab-nivolumab for MBMs after BRAF-MEKi progression has poor activity. MBMs that are resistant to BRAF-MEKi that also conferred resistance to second-line ipilimumab-nivolumab showed enrichment of the IPRES gene signature.
  • Item
    Thumbnail Image
    Evolution of late-stage metastatic melanoma is dominated by aneuploidy and whole genome doubling
    Vergara, IA ; Mintoff, CP ; Sandhu, S ; McIntosh, L ; Young, RJ ; Wong, SQ ; Colebatch, A ; Cameron, DL ; Kwon, JL ; Wolfe, R ; Peng, A ; Ellul, J ; Dou, X ; Fedele, C ; Boyle, S ; Arnau, GM ; Raleigh, J ; Hatzimihalis, A ; Szeto, P ; Mooi, J ; Widmer, DS ; Cheng, PF ; Amann, V ; Dummer, R ; Hayward, N ; Wilmott, J ; Scolyer, RA ; Cho, RJ ; Bowtell, D ; Thorne, H ; Alsop, K ; Cordner, S ; Woodford, N ; Leditschke, J ; O'Brien, P ; Dawson, S-J ; McArthur, GA ; Mann, GJ ; Levesque, MP ; Papenfuss, AT ; Shackleton, M (NATURE RESEARCH, 2021-03-04)
    Although melanoma is initiated by acquisition of point mutations and limited focal copy number alterations in melanocytes-of-origin, the nature of genetic changes that characterise lethal metastatic disease is poorly understood. Here, we analyze the evolution of human melanoma progressing from early to late disease in 13 patients by sampling their tumours at multiple sites and times. Whole exome and genome sequencing data from 88 tumour samples reveals only limited gain of point mutations generally, with net mutational loss in some metastases. In contrast, melanoma evolution is dominated by whole genome doubling and large-scale aneuploidy, in which widespread loss of heterozygosity sculpts the burden of point mutations, neoantigens and structural variants even in treatment-naïve and primary cutaneous melanomas in some patients. These results imply that dysregulation of genomic integrity is a key driver of selective clonal advantage during melanoma progression.
  • Item
    Thumbnail Image
    CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer
    Sanij, E ; Hannan, KM ; Xuan, J ; Yan, S ; Ahern, JE ; Trigos, AS ; Brajanovski, N ; Son, J ; Chan, KT ; Kondrashova, O ; Lieschke, E ; Wakefield, MJ ; Frank, D ; Ellis, S ; Cullinane, C ; Kang, J ; Poortinga, G ; Nag, P ; Deans, AJ ; Khanna, KK ; Mileshkin, L ; McArthur, GA ; Soong, J ; Berns, EMJJ ; Hannan, RD ; Scott, CL ; Sheppard, KE ; Pearson, RB (NATURE PUBLISHING GROUP, 2020-05-26)
    Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.