Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells
    Naik, E ; O'Reilly, LA ; Asselin-Labat, M-L ; Merino, D ; Lin, A ; Cook, M ; Coultas, L ; Bouillet, P ; Adams, JM ; Strasser, A (ROCKEFELLER UNIV PRESS, 2011-07-04)
    For malignant growth, solid cancers must stimulate the formation of new blood vessels by producing vascular endothelial growth factor (VEGF-A), which is required for the survival of tumor-associated vessels. Novel anticancer agents that block VEGF-A signaling trigger endothelial cell (EC) apoptosis and vascular regression preferentially within tumors, but how the ECs die is not understood. In this study, we demonstrate that VEGF-A deprivation, provoked either by drug-induced tumor shrinkage or direct VEGF-A blockade, up-regulates the proapoptotic BH3 (Bcl-2 homology 3)-only Bcl-2 family member Bim in ECs. Importantly, the tumor growth inhibitory activity of a VEGF-A antagonist required Bim-induced apoptosis of ECs. These findings thus reveal the mechanism by which VEGF-A blockade induces EC apoptosis and impairs tumor growth. They also indicate that drugs mimicking BH3-only proteins may be exploited to kill tumor cells not only directly but also indirectly by ablating the tumor vasculature.
  • Item
    Thumbnail Image
    Fas ligand, Bcl-2, granulocyte colony-stimulating factor, and p38 mitogen-activated protein kinase: Regulators of distinct cell death and survival pathways in granulocytes
    Villunger, A ; O'Reilly, LA ; Holler, N ; Adams, J ; Strasser, A (ROCKEFELLER UNIV PRESS, 2000-09-04)
    The short life span of granulocytes, which limits many inflammatory responses, is thought to be influenced by the Bcl-2 protein family, death receptors such as CD95 (Fas/APO-1), stress-activated protein kinases such as p38 mitogen-activated protein kinase (MAPK), and proinflammatory cytokines like granulocyte colony-stimulating factor (G-CSF). To clarify the roles of these various regulators in granulocyte survival, we have investigated the spontaneous apoptosis of granulocytes in culture and that induced by Fas ligand or chemotherapeutic drugs, using cells from normal, CD95-deficient lpr, or vav-bcl-2 transgenic mice. CD95-induced apoptosis, which required receptor aggregation by recombinant Fas ligand or the membrane-bound ligand, was unaffected by G-CSF treatment or Bcl-2 overexpression. Conversely, spontaneous and drug-induced apoptosis occurred normally in lpr granulocytes but were suppressed by G-CSF treatment or Bcl-2 overexpression. Although activation of p38 MAPK has been implicated in granulocyte death, their apoptosis actually was markedly accelerated by specific inhibitors of this kinase. These results suggest that G-CSF promotes granulocyte survival largely through the Bcl-2-controlled pathway, whereas CD95 regulates a distinct pathway to apoptosis that is not required for either their spontaneous or drug-induced death. Moreover, p38 MAPK signaling contributes to granulocyte survival rather than their apoptosis.
  • Item
    Thumbnail Image
    Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-xL
    Hausmann, G ; O'Reilly, LA ; van Driel, R ; Beaumont, JC ; Strasser, A ; Adams, JM ; Huang, DCS (ROCKEFELLER UNIV PRESS, 2000-05-01)
    How Bcl-2 and its pro-survival relatives prevent activation of the caspases that mediate apoptosis is unknown, but they appear to act through the caspase activator apoptosis protease-activating factor 1 (Apaf-1). According to the apoptosome model, the Bcl-2-like proteins preclude Apaf-1 activity by sequestering the protein. To explore Apaf-1 function and to test this model, we generated monoclonal antibodies to Apaf-1 and used them to determine its localization within diverse cells by subcellular fractionation and confocal laser scanning microscopy. Whereas Bcl-2 and Bcl-x(L) were prominent on organelle membranes, endogenous Apaf-1 was cytosolic and did not colocalize with them, even when these pro-survival proteins were overexpressed or after apoptosis was induced. Immunogold electron microscopy confirmed that Apaf-1 was dispersed in the cytoplasm and not on mitochondria or other organelles. After the death stimuli, Bcl-2 and Bcl-x(L) precluded the release of the Apaf-1 cofactor cytochrome c from mitochondria and the formation of larger Apaf-1 complexes, which are steps that presage apoptosis. However, neither Bcl-2 nor Bcl-x(L) could prevent the in vitro activation of Apaf-1 induced by the addition of exogenous cytochrome c. Hence, rather than sequestering Apaf-1 as proposed by the apoptosome model, Bcl-2-like proteins probably regulate Apaf-1 indirectly by controlling upstream events critical for its activation.