Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    A comparative study of a flow-cytometry-based assessment of in vitro Plasmodium falciparum drug sensitivity.
    Karl, S ; Wong, RP ; St Pierre, TG ; Davis, TM (Springer Science and Business Media LLC, 2009-12-14)
    BACKGROUND: Recently developed Sybr Green-based in vitro Plasmodium falciparum drug sensitivity assays provide an attractive alternative to current manual and automated methods. The present study evaluated flow cytometry measurement of DNA staining with Sybr Green in comparison with the P. falciparum lactate dehydrogenase assay, the tritiated hypoxanthine incorporation assay, a previously described Sybr Green based plate reader assay and light microscopy. METHODS: All assays were set up in standardized format in 96-well plates. The 50% inhibitory concentrations (IC50) of chloroquine, mefloquine and dihydroartemisinin against the laboratory adapted P. falciparum strains 3D7, E8B, W2mef and Dd2 were determined using each method. RESULTS: The resolution achieved by flow cytometry allowed quantification of the increase in individual cell DNA content after an incubation period of only 24 h. Regression, and Bland and Altman analyses showed that the IC50 values determined using the flow cytometry assay after 24 h agreed well with those obtained using the hypoxanthine incorporation assay, the P. falciparum lactate dehydrogenase assay, the Sybr Green plate reader assay and light microscopy. However the values obtained with the flow cytometry assay after 48 h of incubation differed significantly from those obtained with the hypoxanthine incorporation assay, and the P. falciparum lactate dehydrogenase assay at low IC50 values, but agreed well with the Sybr Green plate reader assay and light microscopy. CONCLUSIONS: Although flow cytometric equipment is expensive, the necessary reagents are inexpensive, the procedure is simple and rapid, and the cell volume required is minimal. This should allow field studies using fingerprick sample volumes.
  • Item
    Thumbnail Image
    Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission
    Karl, S ; David, M ; Moore, L ; Grimberg, BT ; Michon, P ; Mueller, I ; Zborowski, M ; Zimmerman, PA (BMC, 2008-04-25)
    BACKGROUND: Aggregated haemozoin crystals within malaria-infected erythrocytes confer susceptibility of parasitized cells to a magnetic field. Here the utility of this method for diagnosis of human malaria is evaluated in a malaria-endemic region of Papua New Guinea (PNG). METHODS AND FINDINGS: Individuals with Plasmodium falciparum malaria symptoms (n = 55) provided samples for conventional blood smear (CBS) and magnetic deposition microscopy (MDM) diagnosis. Standard Giemsa staining and light microscopy was performed to evaluate all preparations. Plasmodium falciparum parasitaemia observed on MDM slides was consistently higher than parasitaemia observed by (CBS) for ring (CBS = 2.6 vs. MDM = 3.4%; t-test P-value = 0.13), trophozoite (CBS = 0.5 vs. MDM = 1.6%; t-test P-value = 0.01), schizont (CBS = 0.003 vs. MDM = 0.1%; t-test P-value = 0.08) and gametocyte (CBS = 0.001 vs. MDM = 0.4%; t-test P-value = 0.0002) parasitaemias. Gametocyte prevalence determined by CBS compared to MDM increased from 7.3% to 45%, respectively. CONCLUSION: MDM increased detection sensitivity of P. falciparum-infected, haemozoin-containing erythrocytes from infected humans while maintaining detection of ring-stage parasites. Gametocyte prevalence five-fold higher than observed by CBS suggests higher malaria transmission potential in PNG endemic sites compared to previous estimates.
  • Item
    Thumbnail Image
    A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR.
    Karl, S ; Davis, TME ; St-Pierre, TG (Springer Science and Business Media LLC, 2009-05-11)
    BACKGROUND: The magnetic properties of Plasmodium-infected erythrocytes have been exploited for different clinical and research purposes. A recent study in a rural clinical setting in Papua New Guinea has demonstrated that Plasmodium falciparum gametocyte detection is facilitated by magnetic deposition microscopy but no study has yet determined the relative sensitivity and limit of detection of a magnetic fractionation technique. The present study compares the detection limit and sensitivity of a technique based on the use of commercially available magnetic fractionation columns with those for thick blood film microscopy and reverse transcriptase polymerase chain reaction (RT-PCR) methods. METHODS: Gametocyte detection in six series of dilutions of cultured P. falciparum parasites with known gametocytaemia was conducted using magnetic fractionation, thick blood film, and RT-PCR techniques. RESULTS: The preparations obtained by the magnetic fractionation method were of thin film quality allowing easy gametocyte identification by light microscopy. Magnetic fractionation had a higher sensitivity and approximately two orders of magnitude better limit of detection than thick blood film microscopy. Gametocytes were also more readily detectable on the magnetically fractionated preparations. Magnetic fractionation had a similar limit of detection to that of RT-PCR. CONCLUSION: Magnetic fractionation is a highly sensitive and convenient method for gametocyte detection in comparison with the standard thick blood film and RT-PCR methods, and could readily be adapted to field application.