Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites
    Sargeant, TJ ; Marti, M ; Caler, E ; Carlton, JM ; Simpson, K ; Speed, TP ; Cowman, AF (BMC, 2006)
    BACKGROUND: The apicomplexan parasite Plasmodium falciparum causes the most severe form of malaria in humans. After invasion into erythrocytes, asexual parasite stages drastically alter their host cell and export remodeling and virulence proteins. Previously, we have reported identification and functional analysis of a short motif necessary for export of proteins out of the parasite and into the red blood cell. RESULTS: We have developed software for the prediction of exported proteins in the genus Plasmodium, and identified exported proteins conserved between malaria parasites infecting rodents and the two major causes of human malaria, P. falciparum and P. vivax. This conserved 'exportome' is confined to a few subtelomeric chromosomal regions in P. falciparum and the synteny of these and surrounding regions is conserved in P. vivax. We have identified a novel gene family PHIST (for Plasmodium helical interspersed subtelomeric family) that shares a unique domain with 72 paralogs in P. falciparum and 39 in P. vivax; however, there is only one member in each of the three species studied from the P. berghei lineage. CONCLUSION: These data suggest radiation of genes encoding remodeling and virulence factors from a small number of loci in a common Plasmodium ancestor, and imply a closer phylogenetic relationship between the P. vivax and P. falciparum lineages than previously believed. The presence of a conserved 'exportome' in the genus Plasmodium has important implications for our understanding of both common mechanisms and species-specific differences in host-parasite interactions, and may be crucial in developing novel antimalarial drugs to this infectious disease.
  • Item
    Thumbnail Image
    Integrative analysis of RUNX1 downstream pathways and target genes
    Michaud, J ; Simpson, KM ; Escher, R ; Buchet-Poyau, K ; Beissbarth, T ; Carmichael, C ; Ritchie, ME ; Schuetz, F ; Cannon, P ; Liu, M ; Shen, X ; Ito, Y ; Raskind, WH ; Horwitz, MS ; Osato, M ; Turner, DR ; Speed, TP ; Kavallaris, M ; Smyth, GK ; Scott, HS (BMC, 2008-07-31)
    BACKGROUND: The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. RESULTS: Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFbeta, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFbeta. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. CONCLUSION: This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications.
  • Item
    Thumbnail Image
    Differential splicing using whole-transcript microarrays
    Robinson, MD ; Speed, TP (BMC, 2009-05-22)
    BACKGROUND: The latest generation of Affymetrix microarrays are designed to interrogate expression over the entire length of every locus, thus giving the opportunity to study alternative splicing genome-wide. The Exon 1.0 ST (sense target) platform, with versions for Human, Mouse and Rat, is designed primarily to probe every known or predicted exon. The smaller Gene 1.0 ST array is designed as an expression microarray but still interrogates expression with probes along the full length of each well-characterized transcript. We explore the possibility of using the Gene 1.0 ST platform to identify differential splicing events. RESULTS: We propose a strategy to score differential splicing by using the auxiliary information from fitting the statistical model, RMA (robust multichip analysis). RMA partitions the probe-level data into probe effects and expression levels, operating robustly so that if a small number of probes behave differently than the rest, they are downweighted in the fitting step. We argue that adjacent poorly fitting probes for a given sample can be evidence of differential splicing and have designed a statistic to search for this behaviour. Using a public tissue panel dataset, we show many examples of tissue-specific alternative splicing. Furthermore, we show that evidence for putative alternative splicing has a strong correspondence between the Gene 1.0 ST and Exon 1.0 ST platforms. CONCLUSION: We propose a new approach, FIRMAGene, to search for differentially spliced genes using the Gene 1.0 ST platform. Such an analysis complements the search for differential expression. We validate the method by illustrating several known examples and we note some of the challenges in interpreting the probe-level data.Software implementing our methods is freely available as an R package.
  • Item
    Thumbnail Image
    Evolution and comparative analysis of the MHC Class III inflammatory region
    Deakin, JE ; Papenfuss, AT ; Belov, K ; Cross, JGR ; Coggill, P ; Palmer, S ; Sims, S ; Speed, TP ; Beck, S ; Graves, JAM (BMC, 2006-11-02)
    BACKGROUND: The Major Histocompatibility Complex (MHC) is essential for immune function. Historically, it has been subdivided into three regions (Class I, II, and III), but a cluster of functionally related genes within the Class III region has also been referred to as the Class IV region or "inflammatory region". This group of genes is involved in the inflammatory response, and includes members of the tumour necrosis family. Here we report the sequencing, annotation and comparative analysis of a tammar wallaby BAC containing the inflammatory region. We also discuss the extent of sequence conservation across the entire region and identify elements conserved in evolution. RESULTS: Fourteen Class III genes from the tammar wallaby inflammatory region were characterised and compared to their orthologues in other vertebrates. The organisation and sequence of genes in the inflammatory region of both the wallaby and South American opossum are highly conserved compared to known genes from eutherian ("placental") mammals. Some minor differences separate the two marsupial species. Eight genes within the inflammatory region have remained tightly clustered for at least 360 million years, predating the divergence of the amphibian lineage. Analysis of sequence conservation identified 354 elements that are conserved. These range in size from 7 to 431 bases and cover 15.6% of the inflammatory region, representing approximately a 4-fold increase compared to the average for vertebrate genomes. About 5.5% of this conserved sequence is marsupial-specific, including three cases of marsupial-specific repeats. Highly Conserved Elements were also characterised. CONCLUSION: Using comparative analysis, we show that a cluster of MHC genes involved in inflammation, including TNF, LTA (or its putative teleost homolog TNF-N), APOM, and BAT3 have remained together for over 450 million years, predating the divergence of mammals from fish. The observed enrichment in conserved sequences within the inflammatory region suggests conservation at the transcriptional regulatory level, in addition to the functional level.
  • Item
    Thumbnail Image
    Proximal genomic localization of STATI binding and regulated transcriptional activity
    Wormald, S ; Hilton, DJ ; Smyth, GK ; Speed, TP (BMC, 2006-10-11)
    BACKGROUND: Signal transducer and activator of transcription (STAT) proteins are key regulators of gene expression in response to the interferon (IFN) family of anti-viral and anti-microbial cytokines. We have examined the genomic relationship between STAT1 binding and regulated transcription using multiple tiling microarray and chromatin immunoprecipitation microarray (ChIP-chip) experiments from public repositories. RESULTS: In response to IFN-gamma, STAT1 bound proximally to regions of the genome that exhibit regulated transcriptional activity. This finding was consistent between different tiling microarray platforms, and between different measures of transcriptional activity, including differential binding of RNA polymerase II, and differential mRNA transcription. Re-analysis of tiling microarray data from a recent study of IFN-gamma-induced STAT1 ChIP-chip and mRNA expression revealed that STAT1 binding is tightly associated with localized mRNA transcription in response to IFN-gamma. Close relationships were also apparent between STAT1 binding, STAT2 binding, and mRNA transcription in response to IFN-alpha. Furthermore, we found that sites of STAT1 binding within the Encyclopedia of DNA Elements (ENCODE) region are precisely correlated with sites of either enhanced or diminished binding by the RNA polymerase II complex. CONCLUSION: Together, our results indicate that STAT1 binds proximally to regions of the genome that exhibit regulated transcriptional activity. This finding establishes a generalized basis for the positioning of STAT1 binding sites within the genome, and supports a role for STAT1 in the direct recruitment of the RNA polymerase II complex to the promoters of IFN-gamma-responsive genes.
  • Item
    Thumbnail Image
    Genes implicated in multiple sclerosis pathogenesis from consilience of genotyping and expression profiles in relapse and remission
    Arthur, AT ; Armati, PJ ; Bye, C ; Heard, RNS ; Stewart, GJ ; Pollard, JD ; Booth, DR (BMC, 2008-03-19)
    BACKGROUND: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Although the pathogenesis of MS remains unknown, it is widely regarded as an autoimmune disease mediated by T-lymphocytes directed against myelin proteins and/or other oligodendrocyte epitopes. METHODS: In this study we investigated the gene expression profiles of peripheral blood cells from patients with RRMS during the relapse and the remission phases utilizing gene microarray technology. Dysregulated genes encoded in regions associated with MS susceptibility from genomic screens or previous transcriptomic studies were identified. The proximal promoter region polymorphisms of two genes were tested for association with disease and expression level. RESULTS: Distinct sets of dysregulated genes during the relapse and remission phases were identified including genes involved in apoptosis and inflammation. Three of these dysregulated genes have been previously implicated with MS susceptibility in genomic screens: TGFbeta1, CD58 and DBC1. TGFbeta1 has one common SNP in the proximal promoter: -508 T>C (rs1800469). Genotyping two Australian trio sets (total 620 families) found a trend for over-transmission of the T allele in MS in females (p < 0.13). Upregulation of CD58 and DBC1 in remission is consistent with their putative roles in promoting regulatory T cells and reducing cell proliferation, respectively. A fourth gene, ALOX5, is consistently found over-expressed in MS. Two common genetic variants were confirmed in the ALOX5 putative promoter: -557 T>C (rs12762303) and a 6 bp tandem repeat polymorphism (GGGCGG) between position -147 and -176; but no evidence for transmission distortion found. CONCLUSION: The dysregulation of these genes tags their metabolic pathways for further investigation for potential therapeutic intervention.
  • Item
    Thumbnail Image
    Variants of ST8SIA1 Are Associated with Risk of Developing Multiple Sclerosis
    Husain, S ; Yildirim-Toruner, C ; Rubio, JP ; Field, J ; Schwalb, M ; Cook, S ; Devoto, M ; Vitale, E ; Reitsma, PH (PUBLIC LIBRARY SCIENCE, 2008-07-09)
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system of unknown etiology with both genetic and environmental factors playing a role in susceptibility. To date, the HLA DR15/DQ6 haplotype within the major histocompatibility complex on chromosome 6p, is the strongest genetic risk factor associated with MS susceptibility. Additional alleles of IL7 and IL2 have been identified as risk factors for MS with small effect. Here we present two independent studies supporting an allelic association of MS with polymorphisms in the ST8SIA1 gene, located on chromosome 12p12 and encoding ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1. The initial association was made in a single three-generation family where a single-nucleotide polymorphism (SNP) rs4762896, was segregating together with HLA DR15/DQ6 in MS patients. A study of 274 family trios (affected child and both unaffected parents) from Australia validated the association of ST8SIA1 in individuals with MS, showing transmission disequilibrium of the paternal alleles for three additional SNPs, namely rs704219, rs2041906, and rs1558793, with p = 0.001, p = 0.01 and p = 0.01 respectively. These findings implicate ST8SIA1 as a possible novel susceptibility gene for MS.
  • Item
    Thumbnail Image
    Analysis of the platypus genome suggests a transposon origin for mammalian imprinting
    Pask, AJ ; Papenfuss, AT ; Ager, EI ; Mccoll, KA ; Speed, TP ; Renfree, MB (BIOMED CENTRAL LTD, 2009)
    BACKGROUND: Genomic imprinting is an epigenetic phenomenon that results in monoallelic gene expression. Many hypotheses have been advanced to explain why genomic imprinting evolved in mammals, but few have examined how it arose. The host defence hypothesis suggests that imprinting evolved from existing mechanisms within the cell that act to silence foreign DNA elements that insert into the genome. However, the changes to the mammalian genome that accompanied the evolution of imprinting have been hard to define due to the absence of large scale genomic resources between all extant classes. The recent release of the platypus genome has provided the first opportunity to perform comparisons between prototherian (monotreme; which appear to lack imprinting) and therian (marsupial and eutherian; which have imprinting) mammals. RESULTS: We compared the distribution of repeat elements known to attract epigenetic silencing across the entire genome from monotremes and therian mammals, particularly focusing on the orthologous imprinted regions. There is a significant accumulation of certain repeat elements within imprinted regions of therian mammals compared to the platypus. CONCLUSIONS: Our analyses show that the platypus has significantly fewer repeats of certain classes in the regions of the genome that have become imprinted in therian mammals. The accumulation of repeats, especially long terminal repeats and DNA elements, in therian imprinted genes and gene clusters is coincident with, and may have been a potential driving force in, the development of mammalian genomic imprinting. These data provide strong support for the host defence hypothesis.