Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis
    Dakic, A ; Metcalf, D ; Di Rago, L ; Mifsud, S ; Wu, L ; Nutt, SL (ROCKEFELLER UNIV PRESS, 2005-05-02)
    Although the transcription factor PU.1 is essential for fetal lymphomyelopoiesis, we unexpectedly found that elimination of the gene in adult mice allowed disturbed hematopoiesis, dominated by granulocyte production. Impaired production of lymphocytes was evident in PU.1-deficient bone marrow (BM), but myelocytes and clonogenic granulocytic progenitors that are responsive to granulocyte colony-stimulating factor or interleukin-3 increased dramatically. No identifiable common lymphoid or myeloid progenitor populations were discernable by flow cytometry; however, clonogenic assays suggested an overall increased frequency of blast colony-forming cells and BM chimeras revealed existence of long-term self-renewing PU.1-deficient cells that required PU.1 for lymphoid, but not granulocyte, generation. PU.1 deletion in granulocyte-macrophage progenitors, but not in common myeloid progenitors, resulted in excess granulocyte production; this suggested specific roles of PU.1 at different stages of myeloid development. These findings emphasize the distinct nature of adult hematopoiesis and reveal that PU.1 regulates the specification of the multipotent lymphoid and myeloid compartments and restrains, rather than promotes, granulopoiesis.
  • Item
    Thumbnail Image
    Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors
    Nutt, SL ; Metcalf, D ; D' Amico, A ; Polli, M ; Wu, L (ROCKEFELLER UNIV PRESS, 2005-01-17)
    PU.1 is an Ets family transcription factor that is essential for fetal liver hematopoiesis. We have generated a PU.1(gfp) reporter strain that allowed us to examine the expression of PU.1 in all hematopoietic cell lineages and their early progenitors. Within the bone marrow progenitor compartment, PU.1 is highly expressed in the hematopoietic stem cell, the common lymphoid progenitor, and a proportion of common myeloid progenitors (CMPs). Based on Flt3 and PU.1 expression, the CMP could be divided into three subpopulations, Flt3(+) PU.1(hi), Flt3(-) PU.1(hi), and Flt3(-) PU.1(lo) CMPs. Colony-forming assays and in vivo lineage reconstitution demonstrated that the Flt3(+) PU.1(hi) and Flt3(-) PU.1(hi) CMPs were efficient precursors for granulocyte/macrophage progenitors (GMPs), whereas the Flt3(-) PU.1(lo) CMPs were highly enriched for committed megakaryocyte/erythrocyte progenitors (MEPs). CMPs have been shown to rapidly differentiate into GMPs and MEPs in vitro. Interestingly, short-term culture revealed that the Flt3(+) PU.1(hi) and Flt3(-) PU.1(hi) CMPs rapidly became CD16/32(high) (reminiscent of GMPs) in culture, whereas the Flt3(-) PU.1(lo) CMPs were the immediate precursors of the MEP. Thus, down-regulation of PU.1 expression in the CMP is the first molecularly identified event associated with the restriction of differentiation to erythroid and megakaryocyte lineages.