Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Prevalence of polymorphisms in DHFR, DHPS, PFMDR1 and PFCRT genes of Plasmodium falciparum isolates in Quang Tri Province, Vietnam
    Phuc, BQ ; Caruana, SR ; Cowman, AF ; Biggs, B-A ; Thanh, NV ; Tien, NT ; Thuan, LK (SEAMEO TROPMED Network, 2008-11)
    In 2002 an antimalarial drug resistance survey was carried out in a seasonally endemic area of Vietnam. Sulfadoxine/pyrimethamine (S/P) was the standard treatment recommended for uncomplicated Plasmodium falciparum malaria in that area at the time. Early or late treatment failure as defined by WHO was observed in 14.9% (7/47) of patients. Molecular analysis of treatment failure isolates identified that 5/6 carried two or more dhfr and dhps polymorphisms associated with S/P resistance. Chloroquine resistance-associated polymorphisms occurred in 38.5% (15/39) of the isolates. These results support the move to artemisinin-based combination therapy for malaria in Vietnam.
  • Item
    No Preview Available
    A newly discovered protein export machine in malaria parasites
    de Koning-Ward, TF ; Gilson, PR ; Boddey, JA ; Rug, M ; Smith, BJ ; Papenfuss, AT ; Sanders, PR ; Lundie, RJ ; Maier, AG ; Cowman, AF ; Crabb, BS (NATURE PORTFOLIO, 2009-06-18)
    Several hundred malaria parasite proteins are exported beyond an encasing vacuole and into the cytosol of the host erythrocyte, a process that is central to the virulence and viability of the causative Plasmodium species. The trafficking machinery responsible for this export is unknown. Here we identify in Plasmodium falciparum a translocon of exported proteins (PTEX), which is located in the vacuole membrane. The PTEX complex is ATP-powered, and comprises heat shock protein 101 (HSP101; a ClpA/B-like ATPase from the AAA+ superfamily, of a type commonly associated with protein translocons), a novel protein termed PTEX150 and a known parasite protein, exported protein 2 (EXP2). EXP2 is the potential channel, as it is the membrane-associated component of the core PTEX complex. Two other proteins, a new protein PTEX88 and thioredoxin 2 (TRX2), were also identified as PTEX components. As a common portal for numerous crucial processes, this translocon offers a new avenue for therapeutic intervention.
  • Item
    Thumbnail Image
    Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites
    Baum, J ; Papenfuss, AT ; Mair, GR ; Janse, CJ ; Vlachou, D ; Waters, AP ; Cowman, AF ; Crabb, BS ; de Koning-Ward, TF (OXFORD UNIV PRESS, 2009-06)
    Techniques for targeted genetic disruption in Plasmodium, the causative agent of malaria, are currently intractable for those genes that are essential for blood stage development. The ability to use RNA interference (RNAi) to silence gene expression would provide a powerful means to gain valuable insight into the pathogenic blood stages but its functionality in Plasmodium remains controversial. Here we have used various RNA-based gene silencing approaches to test the utility of RNAi in malaria parasites and have undertaken an extensive comparative genomics search using profile hidden Markov models to clarify whether RNAi machinery exists in malaria. These investigative approaches revealed that Plasmodium lacks the enzymology required for RNAi-based ablation of gene expression and indeed no experimental evidence for RNAi was observed. In its absence, the most likely explanations for previously reported RNAi-mediated knockdown are either the general toxicity of introduced RNA (with global down-regulation of gene expression) or a specific antisense effect mechanistically distinct from RNAi, which will need systematic analysis if it is to be of use as a molecular genetic tool for malaria parasites.
  • Item
    Thumbnail Image
    Reticulocyte binding protein homologues are key adhesins during erythrocyte invasion by Plasmodium falciparum
    Triglia, T ; Tham, W-H ; Hodder, A ; Cowman, AF (WILEY, 2009-11)
    The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand-receptor interactions. The P. falciparum reticulocyte-binding protein homologue (PfRh or PfRBL) family have been implicated in the invasion process but their exact role is unknown. PfRh1 and PfRh4, members of this protein family, bind to red blood cells and function in merozoite invasion during which they undergo a series of proteolytic cleavage events before and during entry into the host cell. The ectodomain of PfRh1 and PfRh4 are processed to produce fragments consistent with cleavage in the transmembrane domain and released into the supernatant, at about the time of invasion, in a manner consistent with rhomboid protease cleavage. Processing of both PfRh1 and PfRh4, and by extrapolation all membrane-bound members of this protein family, is important for function and release of these proteins on the merozoite surface and they along with EBA-175 are important components of the tight junction, the transient structure that links the erythrocyte via receptor-ligand interactions to the actin-myosin motor in the invading merozoite.
  • Item
    Thumbnail Image
    Analysis of structure and function of the giant protein Pf332 in Plasmodium falciparum
    Hodder, AN ; Maier, AG ; Rug, M ; Brown, M ; Hommel, M ; Pantic, I ; Puig-de-Morales-Marinkovic, M ; Smith, B ; Triglia, T ; Beeson, J ; Cowman, AF (WILEY, 2009-01)
    Virulence of Plasmodium falciparum, the most lethal parasitic disease in humans, results in part from adhesiveness and increased rigidity of infected erythrocytes. Pf332 is trafficked to the parasite-infected erythrocyte via Maurer's clefts, structures for protein sorting and export in the host erythrocyte. This protein has a domain similar to the Duffy-binding-like (DBL) domain, which functions by binding to receptors for adherence and invasion. To address structure of the Pf332 DBL domain, we expressed this region, and validated its fold on the basis of the disulphide bond pattern, which conformed to the generic pattern for DBL domains. The modelled structure for Pf332 DBL had differences compared with the erythrocyte-binding region of the alphaDBL domain of Plasmodium knowlesi Duffy-binding protein (Pk alpha-DBL). We addressed the function of Pf332 by constructing parasites that either lack expression of the protein or express an altered form. We found no evidence that Pf332 is involved in cytoadhesion or merozoite invasion. Truncation of Pf332 had a significant effect on deformability of the P. falciparum-infected erythrocyte, while loss of the full protein deletion did not. Our data suggest that Pf332 may contribute to the overall deformability of the P. falciparum-infected erythrocyte by anchoring and scaffolding.
  • Item
    Thumbnail Image
    A Novel Family of Apicomplexan Glideosome-associated Proteins with an Inner Membrane-anchoring Role
    Bullen, HE ; Tonkin, CJ ; O'Donnell, RA ; Tham, W-H ; Papenfuss, AT ; Gould, S ; Cowman, AF ; Crabb, BS ; Gilson, PR (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2009-09-11)
    The phylum Apicomplexa are a group of obligate intracellular parasites responsible for a wide range of important diseases. Central to the lifecycle of these unicellular parasites is their ability to migrate through animal tissue and invade target host cells. Apicomplexan movement is generated by a unique system of gliding motility in which substrate adhesins and invasion-related proteins are pulled across the plasma membrane by an underlying actin-myosin motor. The myosins of this motor are inserted into a dual membrane layer called the inner membrane complex (IMC) that is sandwiched between the plasma membrane and an underlying cytoskeletal basket. Central to our understanding of gliding motility is the characterization of proteins residing within the IMC, but to date only a few proteins are known. We report here a novel family of six-pass transmembrane proteins, termed the GAPM family, which are highly conserved and specific to Apicomplexa. In Plasmodium falciparum and Toxoplasma gondii the GAPMs localize to the IMC where they form highly SDS-resistant oligomeric complexes. The GAPMs co-purify with the cytoskeletal alveolin proteins and also to some degree with the actin-myosin motor itself. Hence, these proteins are strong candidates for an IMC-anchoring role, either directly or indirectly tethering the motor to the cytoskeleton.
  • Item
    Thumbnail Image
    Identification of Rhoptry Trafficking Determinants and Evidence for a Novel Sorting Mechanism in the Malaria Parasite Plasmodium falciparum
    Richard, D ; Kats, LM ; Langer, C ; Black, CG ; Mitri, K ; Boddey, JA ; Cowman, AF ; Coppel, RL ; Striepen, B (PUBLIC LIBRARY SCIENCE, 2009-03)
    The rhoptry of the malaria parasite Plasmodium falciparum is an unusual secretory organelle that is thought to be related to secretory lysosomes in higher eukaryotes. Rhoptries contain an extensive collection of proteins that participate in host cell invasion and in the formation of the parasitophorous vacuole, but little is known about sorting signals required for rhoptry protein targeting. Using green fluorescent protein chimeras and in vitro pull-down assays, we performed an analysis of the signals required for trafficking of the rhoptry protein RAP1. We provide evidence that RAP1 is escorted to the rhoptry via an interaction with the glycosylphosphatidyl inositol-anchored rhoptry protein RAMA. Once within the rhoptry, RAP1 contains distinct signals for localisation within a sub-compartment of the organelle and subsequent transfer to the parasitophorous vacuole after invasion. This is the first detailed description of rhoptry trafficking signals in Plasmodium.
  • Item
    Thumbnail Image
    Type II fatty acid synthesis is essential only for malaria parasite late liver stage development
    Vaughan, AM ; O'Neill, MT ; Tarun, AS ; Camargo, N ; Phuong, TM ; Aly, ASI ; Cowman, AF ; Kappe, SHI (WILEY, 2009-03)
    Intracellular malaria parasites require lipids for growth and replication. They possess a prokaryotic type II fatty acid synthesis (FAS II) pathway that localizes to the apicoplast plastid organelle and is assumed to be necessary for pathogenic blood stage replication. However, the importance of FAS II throughout the complex parasite life cycle remains unknown. We show in a rodent malaria model that FAS II enzymes localize to the sporozoite and liver stage apicoplast. Targeted deletion of FabB/F, a critical enzyme in fatty acid synthesis, did not affect parasite blood stage replication, mosquito stage development and initial infection in the liver. This was confirmed by knockout of FabZ, another critical FAS II enzyme. However, FAS II-deficient Plasmodium yoelii liver stages failed to form exo-erythrocytic merozoites, the invasive stage that first initiates blood stage infection. Furthermore, deletion of FabI in the human malaria parasite Plasmodium falciparum did not show a reduction in asexual blood stage replication in vitro. Malaria parasites therefore depend on the intrinsic FAS II pathway only at one specific life cycle transition point, from liver to blood.
  • Item
    Thumbnail Image
    Role of the Plasmodium Export Element in Trafficking Parasite Proteins to the Infected Erythrocyte
    Boddey, JA ; Moritz, RL ; Simpson, RJ ; Cowman, AF (WILEY, 2009-03)
    The intracellular survival of Plasmodium falciparum within human erythrocytes is dependent on export of parasite proteins that remodel the host cell. Most exported proteins require a conserved motif (RxLxE/Q/D), termed the Plasmodium export element (PEXEL) or vacuolar targeting sequence (VTS), for targeting beyond the parasitophorous vacuole membrane and into the host cell; however, the precise role of this motif in export is poorly defined. We used transgenic P. falciparum expressing chimeric proteins to investigate the function of the PEXEL motif for export. The PEXEL constitutes a bifunctional export motif comprising a protease recognition sequence that is cleaved, in the endoplasmic reticulum, from proteins destined for export, in a PEXEL arginine- and leucine-dependent manner. Following processing, the remaining conserved PEXEL residue is required to direct the mature protein to the host cell. Furthermore, we demonstrate that N acetylation of proteins following N-terminal processing is a PEXEL-independent process that is insufficient for correct export to the host cell. This work defines the role of each residue in the PEXEL for export into the P. falciparum-infected erythrocyte.
  • Item
    Thumbnail Image
    Differential, Positional-Dependent Transcriptional Response of Antigenic Variation (var) Genes to Biological Stress in Plasmodium falciparum
    Rosenberg, E ; Ben-Shmuel, A ; Shalev, O ; Sinay, R ; Cowman, A ; Pollack, Y ; Hansen, IA (PUBLIC LIBRARY SCIENCE, 2009-09-10)
    1% of the genes of the human malaria causing agent Plasmodium falciparum belong to the heterogeneous var gene family which encodes P. falciparum erythrocyte membrane protein 1 (PFEMP1). This protein mediates part of the pathogenesis of the disease by causing adherence of infected erythrocytes (IE) to the host endothelium. At any given time, only one copy of the family is expressed on the IE surface. The cues which regulate the allelic exclusion of these genes are not known. We show the existence of a differential expression pattern of these genes upon exposure to biological stress in relation to their positional placement on the chromosome - expression of centrally located var genes is induced while sub-telomeric copies of the family are repressed - this phenomenon orchestrated by the histone deacetylase pfsir2. Moreover, stress was found to cause a switch in the pattern of the expressed var genes thus acting as a regulatory cue. By using pharmacological compounds which putatively affect pfsir2 activity, distinct changes of var gene expression patterns were achieved which may have therapeutic ramifications. As disease severity is partly associated with expression of particular var gene subtypes, manipulation of the IE environment may serve as a mechanism to direct transcription towards less virulent genes.