Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Critical B-lymphoid cell intrinsic role of endogenous MCL-1 in c-MYC-induced lymphomagenesis
    Grabow, S ; Kelly, GL ; Delbridge, ARD ; Kelly, PN ; Bouillet, P ; Adams, JM ; Strasser, A (SPRINGERNATURE, 2016-03)
    Evasion of apoptosis is critical for tumorigenesis, and sustained survival of nascent neoplastic cells may depend upon the endogenous levels of pro-survival BCL-2 family members. Indeed, previous studies using gene-targeted mice revealed that BCL-XL, but surprisingly not BCL-2, is critical for the development of c-MYC-induced pre-B/B lymphomas. However, it remains unclear whether another pro-survival BCL-2 relative contributes to their development. MCL-1 is an intriguing candidate, because it is required for cell survival during early B-lymphocyte differentiation. It is expressed abnormally high in several types of human B-cell lymphomas and is implicated in their resistance to chemotherapy. To test the B-cell intrinsic requirement for endogenous MCL-1 in lymphoma development, we conditionally deleted Mcl-1 in B-lymphoid cells of Eμ-Myc transgenic mice. We found that MCL-1 loss in early B-lymphoid progenitors delayed MYC-driven lymphomagenesis. Moreover, the lymphomas that arose when MCL-1 levels were diminished appeared to have been selected for reduced levels of BIM and/or increased levels of BCL-XL. These results underscore the importance of MCL-1 in lymphoma development and show that alterations in the levels of other cell death regulators can compensate for deficiencies in MCL-1 expression.
  • Item
    Thumbnail Image
    Impact of the combined loss of BOK, BAX and BAK on the hematopoietic system is slightly more severe than compound loss of BAX and BAK
    Ke, F ; Grabow, S ; Kelly, GL ; Lin, A ; O'Reilly, LA ; Strasser, A (NATURE PUBLISHING GROUP, 2015-10)
    It is well established that BAX and BAK play crucial, overlapping roles in the intrinsic pathway of apoptosis. Gene targeted mice lacking both BAX and BAK have previously been generated, but the majority of these animals died perinatally. BOK is a poorly studied relative of BAX and BAK that shares extensive amino acid sequence homology to both proteins, but its function remains largely unclear to date. To determine whether BOK plays an overlapping role with BAX and BAK, we utilized a hematopoietic reconstitution model where lethally irradiated wild type mice were transplanted with Bok(-/-)Bax(-/-)Bak(-/-) triple knockout (TKO) fetal liver cells, and compared alongside mice reconstituted with a Bax(-/-)Bak(-/-) double knockout (DKO) hematopoietic compartment. We report here that mice with a TKO and DKO hematopoietic system died at a similar rate and much earlier than control animals, mostly due to severe autoimmune pathology. Both TKO and DKO reconstituted mice also had altered frequencies of various leukocyte subsets in the thymus, bone marrow and spleen, displayed leukocyte infiltrates and autoimmune pathology in multiple tissues, as well as elevated levels of anti-nuclear autoantibodies. Interestingly, the additional deletion of BOK (on top of BAX and BAK loss) led to a further increase in peripheral blood lymphocytes, as well as enhanced lymphoid infiltration in some organs. These findings suggest that BOK may have some functions that are redundant with BAX and BAK in the hematopoietic system.
  • Item
    Thumbnail Image
    Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells
    Fitzsimmons, L ; Boyce, AJ ; Wei, W ; Chang, C ; Croom-Carter, D ; Tierney, RJ ; Herold, MJ ; Bell, AI ; Strasser, A ; Kelly, GL ; Rowe, M (NATURE PUBLISHING GROUP, 2018-02)
    While the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognised, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. Here we have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts. We report that, while loss of EBV from BL cells is rare, it is consistently associated with an enhanced predisposition to undergo apoptosis and reduced tumorigenicity in vivo. Importantly, reinfection of EBV-loss clones with EBV, but surprisingly not transduction with individual BL-associated latent viral genes, restored protection from apoptosis. Expression profiling and functional analysis of apoptosis-related proteins and transcripts in BL cells revealed that EBV inhibits the upregulation of the proapoptotic BH3-only proteins, BIM and PUMA. We conclude that latent EBV genes cooperatively enhance the survival of BL cells by suppression of the intrinsic apoptosis pathway signalling via inhibition of the potent apoptosis initiators, BIM and PUMA.
  • Item
    Thumbnail Image
    MCL-1 is required throughout B-cell development and its loss sensitizes specific B-cell subsets to inhibition of BCL-2 or BCL-XL
    Vikstrom, IB ; Slomp, A ; Carrington, EM ; Moesbergen, LM ; Chang, C ; Kelly, GL ; Glaser, SP ; Jansen, JHM ; Leusen, JHW ; Strasser, A ; Huang, DCS ; Lew, AM ; Peperzak, V ; Tarlinton, DM (NATURE PUBLISHING GROUP, 2016-08)
    Pro-survival BCL-2 family members protect cells from programmed cell death that can be induced by multiple internal or external cues. Within the haematopoietic lineages, the BCL-2 family members BCL-2, BCL-XL and MCL-1 are known to support cell survival but the individual and overlapping roles of these pro-survival BCL-2 proteins for the persistence of individual leukocyte subsets in vivo has not yet been determined. By combining inducible knockout mouse models with the BH3-mimetic compound ABT-737, which inhibits BCL-2, BCL-XL and BCL-W, we found that dependency on MCL-1, BCL-XL or BCL-2 expression changes during B-cell development. We show that BCL-XL expression promotes survival of immature B cells, expression of BCL-2 is important for survival of mature B cells and long-lived plasma cells (PC), and expression of MCL-1 is important for survival throughout B-cell development. These data were confirmed with novel highly specific BH3-mimetic compounds that target either BCL-2, BCL-XL or MCL-1. In addition, we observed that combined inhibition of these pro-survival proteins acts in concert to delete specific B-cell subsets. Reduced expression of MCL-1 further sensitized immature as well as transitional B cells and splenic PC to loss of BCL-XL expression. More markedly, loss of MCL-1 greatly sensitizes PC populations to BCL-2 inhibition using ABT-737, even though the total wild-type PC pool in the spleen is not significantly affected by this drug and the bone marrow (BM) PC population only slightly. Combined loss or inhibition of MCL-1 and BCL-2 reduced the numbers of established PC >100-fold within days. Our data suggest that combination treatment targeting these pro-survival proteins could be advantageous for treatment of antibody-mediated autoimmune diseases and B-cell malignancies.
  • Item
    Thumbnail Image
    Discussion of some "knowns' and some "unknowns' about the tumour suppressor p53
    Lieschke, E ; Wang, Z ; Kelly, GL ; Strasser, A ; Verma, CS (OXFORD UNIV PRESS, 2019-03)
    Activation of the tumour suppressor p53 upon cellular stress can induce a number of different cellular processes. The diverse actions of these processes are critical for the protective function of p53 in preventing the development of cancer. However, it is still not fully understood which process(es) activated by p53 is/are critical for tumour suppression and how this might differ depending on the type of cells undergoing neoplastic transformation and the nature of the drivers of oncogenesis. Moreover, it is not clear why upon activation of p53 some cells undergo cell cycle arrest and senescence whereas others die by apoptosis. Here we discuss some of the cellular processes that are crucial for p53-mediated tumour suppression and the factors that could impact cell fate upon p53 activation. Finally, we describe therapies aimed either at activating wild-type p53 or at changing the behaviour of mutant p53 to unleash tumour growth suppressive processes for therapeutic benefit in malignant disease.
  • Item
    Thumbnail Image
    Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells
    Valente, LJ ; Aubrey, BJ ; Herold, MJ ; Kelly, GL ; Happo, L ; Scott, CL ; Newbold, A ; Johnstone, RW ; Huang, DCS ; Vassilev, LT ; Strasser, A (CELL PRESS, 2016-03-01)
    Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.