Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Identification of genetic factors influencing metabolic dysregulation and retinal support for MacTel, a retinal disorder (vol 4, 274, 2021)
    Bonelli, R ; Jackson, VE ; Prasad, A ; Munro, JE ; Farashi, S ; Heeren, TFC ; Pontikos, N ; Scheppke, L ; Friedlander, M ; Egan, CA ; Allikmets, R ; Ansell, BRE ; Bahlo, M (NATURE RESEARCH, 2021-04-09)
    A Correction to this paper has been published: https://doi.org/10.1038/s42003-021-01972-y
  • Item
    Thumbnail Image
    Genetic disruption of serine biosynthesis is a key driver of macular telangiectasia type 2 aetiology and progression
    Bonelli, R ; Ansell, BRE ; Lotta, L ; Scerri, T ; Clemons, TE ; Leung, I ; Peto, T ; Bird, AC ; Sallo, FB ; Langenberg, C ; Bahlo, M (BMC, 2021-03-09)
    BACKGROUND: Macular telangiectasia type 2 (MacTel) is a rare, heritable and largely untreatable retinal disorder, often comorbid with diabetes. Genetic risk loci subtend retinal vascular calibre and glycine/serine/threonine metabolism genes. Serine deficiency may contribute to MacTel via neurotoxic deoxysphingolipid production; however, an independent vascular contribution is also suspected. Here, we use statistical genetics to dissect the causal mechanisms underpinning this complex disease. METHODS: We integrated genetic markers for MacTel, vascular and metabolic traits, and applied Mendelian randomisation and conditional and interaction genome-wide association analyses to discover the causal contributors to both disease and spatial retinal imaging sub-phenotypes. RESULTS: Genetically induced serine deficiency is the primary causal metabolic driver of disease occurrence and progression, with a lesser, but significant, causal contribution of type 2 diabetes genetic risk. Conversely, glycine, threonine and retinal vascular traits are unlikely to be causal for MacTel. Conditional regression analysis identified three novel disease loci independent of endogenous serine biosynthetic capacity. By aggregating spatial retinal phenotypes into endophenotypes, we demonstrate that SNPs constituting independent risk loci act via related endophenotypes. CONCLUSIONS: Follow-up studies after GWAS integrating publicly available data with deep phenotyping are still rare. Here, we describe such analysis, where we integrated retinal imaging data with MacTel and other traits genomics data to identify biochemical mechanisms likely causing this disorder. Our findings will aid in early diagnosis and accurate prognosis of MacTel and improve prospects for effective therapeutic intervention. Our integrative genetics approach also serves as a useful template for post-GWAS analyses in other disorders.
  • Item
    Thumbnail Image
    Identification of genetic factors influencing metabolic dysregulation and retinal support for MacTel, a retinal disorder
    Bonelli, R ; Jackson, VE ; Prasad, A ; Munro, JE ; Farashi, S ; Heeren, TFC ; Pontikos, N ; Scheppke, L ; Friedlander, M ; Egan, CA ; Allikmets, R ; Ansell, BRE ; Bahlo, M (NATURE PORTFOLIO, 2021-03-02)
    Macular Telangiectasia Type 2 (MacTel) is a rare degenerative retinal disease with complex genetic architecture. We performed a genome-wide association study on 1,067 MacTel patients and 3,799 controls, which identified eight novel genome-wide significant loci (p < 5 × 10-8), and confirmed all three previously reported loci. Using MAGMA, eQTL and transcriptome-wide association analysis, we prioritised 48 genes implicated in serine-glycine biosynthesis, metabolite transport, and retinal vasculature and thickness. Mendelian randomization indicated a likely causative role of serine (FDR = 3.9 × 10-47) and glycine depletion (FDR = 0.006) as well as alanine abundance (FDR = 0.009). Polygenic risk scoring achieved an accuracy of 0.74 and was associated in UKBiobank with retinal damage (p = 0.009). This represents the largest genetic study on MacTel to date and further highlights genetically-induced systemic and tissue-specific metabolic dysregulation in MacTel patients, which impinges on retinal health.
  • Item
    Thumbnail Image
    Eukaryote-ConservedMethylarginine Is Absent in Diplomonads and Functionally Compensated in Giardia
    Emery-Corbin, SJ ; Hamey, JJ ; Ansell, BRE ; Balan, B ; Tichkule, S ; Stroehlein, AJ ; Cooper, C ; McInerney, B ; Hediyeh-Zadeh, S ; Vuong, D ; Crombie, A ; Lacey, E ; Davis, MJ ; Wilkins, MR ; Bahlo, M ; Svard, SG ; Gasser, RB ; Jex, AR ; Russo, C (OXFORD UNIV PRESS, 2020-12)
    Methylation is a common posttranslational modification of arginine and lysine in eukaryotic proteins. Methylproteomes are best characterized for higher eukaryotes, where they are functionally expanded and evolved complex regulation. However, this is not the case for protist species evolved from the earliest eukaryotic lineages. Here, we integrated bioinformatic, proteomic, and drug-screening data sets to comprehensively explore the methylproteome of Giardia duodenalis-a deeply branching parasitic protist. We demonstrate that Giardia and related diplomonads lack arginine-methyltransferases and have remodeled conserved RGG/RG motifs targeted by these enzymes. We also provide experimental evidence for methylarginine absence in proteomes of Giardia but readily detect methyllysine. We bioinformatically infer 11 lysine-methyltransferases in Giardia, including highly diverged Su(var)3-9, Enhancer-of-zeste and Trithorax proteins with reduced domain architectures, and novel annotations demonstrating conserved methyllysine regulation of eukaryotic elongation factor 1 alpha. Using mass spectrometry, we identify more than 200 methyllysine sites in Giardia, including in species-specific gene families involved in cytoskeletal regulation, enriched in coiled-coil features. Finally, we use known methylation inhibitors to show that methylation plays key roles in replication and cyst formation in this parasite. This study highlights reduced methylation enzymes, sites, and functions early in eukaryote evolution, including absent methylarginine networks in the Diplomonadida. These results challenge the view that arginine methylation is eukaryote conserved and demonstrate that functional compensation of methylarginine was possible preceding expansion and diversification of these key networks in higher eukaryotes.
  • Item
    Thumbnail Image
    Systemic lipid dysregulation is a risk factor for macular neurodegenerative disease
    Bonelli, R ; Woods, SM ; Ansell, BRE ; Heeren, TFC ; Egan, CA ; Khan, KN ; Guymer, R ; Trombley, J ; Friedlander, M ; Bahlo, M ; Fruttiger, M (NATURE PORTFOLIO, 2020-07-22)
    Macular Telangiectasia type 2 (MacTel) is an uncommon bilateral retinal disease, in which glial cell and photoreceptor degeneration leads to central vision loss. The causative disease mechanism is largely unknown, and no treatment is currently available. A previous study found variants in genes associated with glycine-serine metabolism (PSPH, PHGDH and CPS1) to be associated with MacTel, and showed low levels of glycine and serine in the serum of MacTel patients. Recently, a causative role of deoxysphingolipids in MacTel disease has been established. However, little is known about possible other metabolic dysregulation. Here we used a global metabolomics platform in a case-control study to comprehensively profile serum from 60 MacTel patients and 58 controls. Analysis of the data, using innovative computational approaches, revealed a detailed, disease-associated metabolic profile with broad changes in multiple metabolic pathways. This included alterations in the levels of several metabolites that are directly or indirectly linked to glycine-serine metabolism, further validating our previous genetic findings. We also found changes unrelated to PSPH, PHGDH and CPS1 activity. Most pronounced, levels of several lipid groups were altered, with increased phosphatidylethanolamines being the most affected lipid group. Assessing correlations between different metabolites across our samples revealed putative functional connections. Correlations between phosphatidylethanolamines and sphingomyelin, and glycine-serine and sphingomyelin, observed in controls, were reduced in MacTel patients, suggesting metabolic re-wiring of sphingomyelin metabolism in MacTel patients. Our findings provide novel insights into metabolic changes associated with MacTel and implicate altered lipid metabolism as a contributor to this retinal neurodegenerative disease.