Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    CD8+TISSUE-RESIDENT MEMORY T CELLS ARE TUMOUR REACTIVE AND INCREASE AFTER IMMUNOTHERAPY IN A CASE OF METASTATIC MUCOSAL MELANOMA
    Pizzolla, A ; Keam, S ; Vergara, I ; Caramia, F ; Wang, M ; Kocovski, N ; ThuNgoc, N ; Macdonald, S ; Tantalo, D ; Petrone, P ; Yeang, HXA ; Gyorki, D ; Weppler, A ; Au-Yeung, G ; Sandhu, S ; Perdicchio, M ; McArthur, G ; Papenfuss, T ; Neeson, P (BMJ PUBLISHING GROUP, 2020-11)
    Background Mucosal melanoma is a rare subtype of melanoma originating from mucosal tissues (1), metastases are very aggressive and respond poorly to therapy, including immune checkpoint inhibitors (ICI) such as anti-CTLA4 and anti-PD1 antibodies (2–5). CD8+ T cells constitute the most abundant immune infiltrate in metastatic melanoma, of which the Tissue Resident Memory subset (TRM) is of particular interest (6). CD8+ TRM cells express the highest levels of immune checkpoint receptors, proliferate in response to ICI and correlate with longer disease-free and overall survival (6–8). The immune landscape in mucosal melanoma remains poorly characterized. We aimed to: 1) phenotype CD8+ T cells and TRM infiltrating metastatic mucosal melanoma, 2) characterize the clonality of TRM in relation to other CD8+ T cell subsets and 3) define the capacity of CD8+ T cells and TRM to respond to melanoma cells and to in vivo and in vitro anti-PD1 treatment. Methods We investigated the CD8+ T and TRM cells infiltrating two temporally- and spatially-distant subcutaneous metastases, these originated from a primary vaginal mucosal melanoma. One metastasis was excised prior to anti-PD1 treatment and one was anti-PD1 refractory, having progressed on treatment. We used mass cytometry and single-cell RNA and TCR sequencing to characterise the phenotype and clonality of the T cells, multiplex immunohistochemistry to define their spatial relationship with tumour cells and other T cells, and functional assays to determine TRM response to tumour cells (figure 1). Results CD8+ TRM frequency increased with time and anti-PD1 treatment, forming clusters at the tumour margin. T cells in the anti-PD1 refractory lesion were more activated than T cells in the first tumour and were bound by anti-PD1 antibody in vivo. T cells could not be stimulated by anti-PD1 directly ex vivo. Both metastatic lesions shared common T cell clusters including TRM. Furthermore, TRM in each tumour shared T cell clones, suggesting the presence of common antigens between metastatic sites. Indeed, the two metastases had a similar mutational profile. In vitro expanded tumour infiltrating lymphocytes from both lesions recognized tumour cells from both lesions and the same neoantigen generated from a single point mutation in the gene CDKN1C. Finally, tumour cells stimulated TRM cells more robustly than other T cells subsets. Abstract 548 Figure 1Graphical depiction of the methods used to characterise T cells in mucosal metastatic melanoma Conclusions In this patient with vaginal mucosal melanoma, subsequent melanoma metastases of clonal origin attracted CD8+ T cells of similar specificity, among which TRM cells responded more vigorously to tumour cells than other T cells subsets. Acknowledgements The authors would like to acknowledge imCORE La Hoffmann- Roche Ltd. for funding. Ethics Approval Patients diagnosed with stage 3 or 4 metastatic melanoma and undergoing clinically indicated surgery were enrolled in prospective studies approved by the Peter MacCallum Cancer Centre human ethics research committee (13/141). All experimental protocols have been approved and clinical data has been collected prospectively. References Carvajal RD, Hamid O, Ariyan C. Mucosal Melanoma. [cited 2020 Apr 1]; Available from: https://www.uptodate.com/contents/mucosal-melanoma Del Vecchio M, Di Guardo L, Ascierto PA, Grimaldi AM, Sileni VC, Pigozzo J, et al. Efficacy and safety of ipilimumab 3 mg/kg in patients with pretreated, metastatic, mucosal melanoma. Eur J Cancer Oxf Engl 1990; 2014 Jan;50(1):121–7. Postow MA, Luke JJ, Bluth MJ, Ramaiya N, Panageas KS, Lawrence DP, et al. Ipilimumab for patients with advanced mucosal melanoma. The Oncologist 2013 Jun;18(6):726–32. D’Angelo SP, Larkin J, Sosman JA, Lebbé C, Brady B, Neyns B, et al. Efficacy and safety of nivolumab alone or in combination with ipilimumab in patients with mucosal melanoma: a pooled analysis. J Clin Oncol Off J Am Soc Clin Oncol. 2017 Jan 10;35(2):226–35. Hamid O, Robert C, Ribas A, Hodi FS, Walpole E, Daud A, et al. Antitumour activity of pembrolizumab in advanced mucosal melanoma: a post-hoc analysis of KEYNOTE-001, 002, 006. Br J Cancer 2018;119(6):670–4. Boddupalli CS, Bar N, Kadaveru K, Krauthammer M, Pornputtapong N, Mai Z, et al. Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells. JCI Insight [Internet]. 2016 Dec 22 [cited 2019 Apr 24];1(21). Available from: https://insight.jci.org/articles/view/88955 Edwards J, Wilmott JS, Madore J, Gide TN, Quek C, Tasker A, et al. CD103+ Tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment. Clin Cancer Res Off J Am Assoc Cancer Res 2018 Jul 1;24(13):3036–45. Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 2018 Jul;24(7):986–93.
  • Item
    No Preview Available
    Inhibition of RNA polymerase I transcription activates targeted DNA damage response and enhances the efficacy of PARP inhibitors in high-grade serous ovarian cancer.
    Sanij, E ; Hannan, K ; Xuan, J ; Yan, S ; Ahern, JA ; Trigos, AS ; Brajanovski, N ; Son, J ; Chan, KT ; Kondrashova, O ; Lieschke, E ; Wakefield, MJ ; Ellis, S ; Cullinane, C ; Poortinga, G ; Khanna, KK ; Mileshkin, L ; McArthur, GA ; Soong, J ; Berns, EM ; Hannan, RD ; Scott, CL ; Sheppard, KE ; Pearson, RB (AMER ASSOC CANCER RESEARCH, 2020-07)
    Abstract Introduction: PARP inhibitors (PARPi) have revolutionized disease management of patients with homologous recombination (HR) DNA repair-deficient high-grade serous ovarian cancer (HGSOC). However, acquired resistance to PARPi is a major challenge in the clinic. The specific inhibitor of RNA polymerase I (Pol I) transcription of ribosomal RNA genes (rDNA) has demonstrated single-agent antitumor activity in p53 wild-type and p53-mutant hematologic malignancies (first-in-human trial, dose escalation study of CX-5461 at Peter MacCallum Cancer Centre) (Khot et al., Cancer Discov 2019). CX-5461 has also been reported to exhibit synthetic lethality with BRCA1/2 deficiency through stabilization of G-quadruplex DNA (GQ) structures. Here, we investigate the efficacy of CX-5461 in treating HGSOC. Experimental Design: The mechanisms by which CX-5461 induces DNA damage response (DDR) and displays synthetic lethality in HR-deficient HGSOC cells are explored. We present in vivo data of mice bearing two functionally and genomically profiled HGSOC-patient-derived xenograft (PDX)s treated with CX-5461 and olaparib, alone and in combination. We also investigate CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. Results: Utilizing ovarian cancer cell lines, we demonstrate that sensitivity to CX-5461 is associated with “BRCA1 mutation” and “MYC targets” gene expression signatures. In addition, sensitivity to CX-5461 is associated with high basal rates of Pol I transcription. Importantly, we demonstrate a novel mechanism for CX-5461 synthetic lethal interaction with HR deficiency mediated through the induction of replication stress at rDNA repeats. Our data reveal CX-5461-mediated DDR in HR-deficient cells does not involve stabilization of GQ structures as previously proposed. On the contrary, we show definitively that CX-5461 inhibits Pol I recruitment leading to rDNA chromatin defects including stabilization of R-loops, single-stranded DNA, and replication stress at the rDNA. Mechanistically, we demonstrate CX-5461 leads to replication-dependent DNA damage involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 has a different sensitivity spectrum to olaparib and cooperates with PARPi in exacerbating replication stress, leading to enhanced therapeutic efficacy in HR-deficient HGSOC-PDX in vivo compared to single-agent treatment of both drugs. Further, CX-5461 exhibits single-agent efficacy in olaparib-resistant HGSOC-PDX overcoming PARPi-resistance mechanisms involving fork protection. Importantly, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. Conclusions: CX-5461 is a promising therapy alone and in combination therapy with PARPi in HR-deficient HGSOC. CX-5461 also has exciting potential as a treatment option for patients with relapsed HGSOC tumors that have high MYC activity and poor clinical outcome; these patients currently have very limited effective treatment options. This abstract is also being presented as Poster A71. Citation Format: Elaine Sanij, Katherine Hannan, Jiachen Xuan, Shunfei Yan, Jessica A. Ahern, Anna S. Trigos, Natalie Brajanovski, Jinbae Son, Keefe T. Chan, Olga Kondrashova, Elizabeth Lieschke, Matthew J. Wakefield, Sarah Ellis, Carleen Cullinane, Gretchen Poortinga, Kum Kum Khanna, Linda Mileshkin, Grant A. McArthur, John Soong, Els M. Berns, Ross D. Hannan, Clare L. Scott, Karen E. Sheppard, Richard B. Pearson. Inhibition of RNA polymerase I transcription activates targeted DNA damage response and enhances the efficacy of PARP inhibitors in high-grade serous ovarian cancer [abstract]. In: Proceedings of the AACR Special Conference on Advances in Ovarian Cancer Research; 2019 Sep 13-16, 2019; Atlanta, GA. Philadelphia (PA): AACR; Clin Cancer Res 2020;26(13_Suppl):Abstract nr PR13.