Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Epigenetic modulators of B cell fate identified through coupled phenotype-transcriptome analysis
    Kong, IY ; Trezise, S ; Light, A ; Todorovski, I ; Arnau, GM ; Gadipally, S ; Yoannidis, D ; Simpson, KJ ; Dong, X ; Whitehead, L ; Tempany, JC ; Farchione, AJ ; Sheikh, AA ; Groom, JR ; Rogers, KL ; Herold, MJ ; Bryant, VL ; Ritchie, ME ; Willis, SN ; Johnstone, RW ; Hodgkin, PD ; Nutt, SL ; Vervoort, SJ ; Hawkins, ED (SPRINGERNATURE, 2022-12)
    High-throughput methodologies are the cornerstone of screening approaches to identify novel compounds that regulate immune cell function. To identify novel targeted therapeutics to treat immune disorders and haematological malignancies, there is a need to integrate functional cellular information with the molecular mechanisms that regulate changes in immune cell phenotype. We facilitate this goal by combining quantitative methods for dissecting complex simultaneous cell phenotypic effects with genomic analysis. This combination strategy we term Multiplexed Analysis of Cells sequencing (MAC-seq), a modified version of Digital RNA with perturbation of Genes (DRUGseq). We applied MAC-seq to screen compounds that target the epigenetic machinery of B cells and assess altered humoral immunity by measuring changes in proliferation, survival, differentiation and transcription. This approach revealed that polycomb repressive complex 2 (PRC2) inhibitors promote antibody secreting cell (ASC) differentiation in both murine and human B cells in vitro. This is further validated using T cell-dependent immunization in mice. Functional dissection of downstream effectors of PRC2 using arrayed CRISPR screening uncovered novel regulators of B cell differentiation, including Mybl1, Myof, Gas7 and Atoh8. Together, our findings demonstrate that integrated phenotype-transcriptome analyses can be effectively combined with drug screening approaches to uncover the molecular circuitry that drives lymphocyte fate decisions.
  • Item
    Thumbnail Image
    The concerted change in the distribution of cell cycle phases and zone composition in germinal centers is regulated by IL-21
    Zotos, D ; Quast, I ; Li-Wai-Suen, CSN ; McKenzie, CI ; Robinson, MJ ; Kan, A ; Smyth, GK ; Hodgkin, PD ; Tarlinton, DM (NATURE PORTFOLIO, 2021-12-09)
    Humoral immune responses require germinal centres (GC) for antibody affinity maturation. Within GC, B cell proliferation and mutation are segregated from affinity-based positive selection in the dark zone (DZ) and light zone (LZ) substructures, respectively. While IL-21 is known to be important in affinity maturation and GC maintenance, here we show it is required for both establishing normal zone representation and preventing the accumulation of cells in the G1 cell cycle stage in the GC LZ. Cell cycle progression of DZ B cells is unaffected by IL-21 availability, as is the zone phenotype of the most highly proliferative GC B cells. Collectively, this study characterises the development of GC zones as a function of time and B cell proliferation and identifies IL-21 as an important regulator of these processes. These data help explain the requirement for IL-21 in normal antibody affinity maturation.
  • Item
    Thumbnail Image
    Cyton2: A Model of Immune Cell Population Dynamics That Includes Familial Instructional Inheritance.
    Cheon, H ; Kan, A ; Prevedello, G ; Oostindie, SC ; Dovedi, SJ ; Hawkins, ED ; Marchingo, JM ; Heinzel, S ; Duffy, KR ; Hodgkin, PD (Frontiers Media SA, 2021)
    Lymphocytes are the central actors in adaptive immune responses. When challenged with antigen, a small number of B and T cells have a cognate receptor capable of recognising and responding to the insult. These cells proliferate, building an exponentially growing, differentiating clone army to fight off the threat, before ceasing to divide and dying over a period of weeks, leaving in their wake memory cells that are primed to rapidly respond to any repeated infection. Due to the non-linearity of lymphocyte population dynamics, mathematical models are needed to interrogate data from experimental studies. Due to lack of evidence to the contrary and appealing to arguments based on Occam's Razor, in these models newly born progeny are typically assumed to behave independently of their predecessors. Recent experimental studies, however, challenge that assumption, making clear that there is substantial inheritance of timed fate changes from each cell by its offspring, calling for a revision to the existing mathematical modelling paradigms used for information extraction. By assessing long-term live-cell imaging of stimulated murine B and T cells in vitro, we distilled the key phenomena of these within-family inheritances and used them to develop a new mathematical model, Cyton2, that encapsulates them. We establish the model's consistency with these newly observed fine-grained features. Two natural concerns for any model that includes familial correlations would be that it is overparameterised or computationally inefficient in data fitting, but neither is the case for Cyton2. We demonstrate Cyton2's utility by challenging it with high-throughput flow cytometry data, which confirms the robustness of its parameter estimation as well as its ability to extract biological meaning from complex mixed stimulation experiments. Cyton2, therefore, offers an alternate mathematical model, one that is, more aligned to experimental observation, for drawing inferences on lymphocyte population dynamics.
  • Item
    Thumbnail Image
    Pre-mitotic genome re-organisation bookends the B cell differentiation process
    Chan, WF ; Coughlan, HD ; Zhou, JHS ; Keenan, CR ; Bediaga, NG ; Hodgkin, PD ; Smyth, GK ; Johanson, TM ; Allan, RS (NATURE RESEARCH, 2021-02-26)
    During cellular differentiation chromosome conformation is intricately remodelled to support the lineage-specific transcriptional programs required for initiating and maintaining lineage identity. When these changes occur in relation to cell cycle, division and time in response to cellular activation and differentiation signals has yet to be explored, although it has been proposed to occur during DNA synthesis or after mitosis. Here, we elucidate the chromosome conformational changes in B lymphocytes as they differentiate and expand from a naive, quiescent state into antibody secreting plasma cells. We find gene-regulatory chromosome reorganization in late G1 phase before the first division, and that this configuration is remarkably stable as the cells massively and rapidly clonally expand. A second wave of conformational change occurs as cells terminally differentiate into plasma cells, coincident with increased time in G1 phase. These results provide further explanation for how lymphocyte fate is imprinted prior to the first division. They also suggest that chromosome reconfiguration occurs prior to DNA replication and mitosis, and is linked to a gene expression program that controls the differentiation process required for the generation of immunity.
  • Item
    Thumbnail Image
    Temporal Analysis of Brd4 Displacement in the Control of B Cell Survival, Proliferation, and Differentiation
    Kong, IY ; Rimes, JS ; Light, A ; Todorovski, I ; Jones, S ; Morand, E ; Knight, DA ; Bergman, YE ; Hogg, SJ ; Falk, H ; Monahan, BJ ; Stupple, PA ; Street, IP ; Heinzel, S ; Bouillet, P ; Johnstone, RW ; Hodgkin, PD ; Vervoort, SJ ; Hawkins, ED (CELL PRESS, 2020-10-20)
    JQ1 is a BET-bromodomain inhibitor that has immunomodulatory effects. However, the precise molecular mechanism that JQ1 targets to elicit changes in antibody production is not understood. Our results show that JQ1 induces apoptosis, reduces cell proliferation, and as a consequence, inhibits antibody-secreting cell differentiation. ChIP-sequencing reveals a selective displacement of Brd4 in response to acute JQ1 treatment (<2 h), resulting in specific transcriptional repression. After 8 h, subsequent alterations in gene expression arise as a result of the global loss of Brd4 occupancy. We demonstrate that apoptosis induced by JQ1 is solely attributed to the pro-apoptotic protein Bim (Bcl2l11). Conversely, cell-cycle regulation by JQ1 is associated with multiple Myc-associated gene targets. Our results demonstrate that JQ1 drives temporal changes in Brd4 displacement that results in a specific transcriptional profile that directly affects B cell survival and proliferation to modulate the humoral immune response.
  • Item
    Thumbnail Image
    Speculations on the evolution of humoral adaptive immunity
    Horton, MB ; Hawkins, ED ; Heinzel, S ; Hodgkin, PD (WILEY, 2020-07)
    The protection of a multicellular organism from infection, at both cell and humoral levels, has been a tremendous driver of gene selection and cellular response strategies. Here we focus on a critical event in the development of humoral immunity: The transition from principally innate responses to a system of adaptive cell selection, with all the attendant mechanical problems that must be solved in order for it to work effectively. Here we review recent advances, but our major goal is to highlight that the development of adaptive immunity resulted from the adoption, reuse and repurposing of an ancient, autonomous cellular program that combines and exploits three titratable cellular fate timers. We illustrate how this common cell machinery recurs and appears throughout biology, and has been essential for the evolution of complex organisms, at many levels of scale.