Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    MonitoringPlasmodium falciparumandPlasmodium vivaxusing microsatellite markers indicates limited changes in population structure after substantial transmission decline in Papua New Guinea
    Kattenberg, JH ; Razook, Z ; Keo, R ; Koepfli, C ; Jennison, C ; Lautu-Gumal, D ; Fola, AA ; Ome-Kaius, M ; Barnadas, C ; Siba, P ; Felger, I ; Kazura, J ; Mueller, I ; Robinson, LJ ; Barry, AE (WILEY, 2020-12)
    Monitoring the genetic structure of pathogen populations may be an economical and sensitive approach to quantify the impact of control on transmission dynamics, highlighting the need for a better understanding of changes in population genetic parameters as transmission declines. Here we describe the first population genetic analysis of two major human malaria parasites, Plasmodium falciparum (Pf) and Plasmodium vivax (Pv), following nationwide distribution of long-lasting insecticide-treated nets (LLINs) in Papua New Guinea (PNG). Parasite isolates from pre- (2005-2006) and post-LLIN (2010-2014) were genotyped using microsatellite markers. Despite parasite prevalence declining substantially (East Sepik Province: Pf = 54.9%-8.5%, Pv = 35.7%-5.6%, Madang Province: Pf = 38.0%-9.0%, Pv: 31.8%-19.7%), genetically diverse and intermixing parasite populations remained. Pf diversity declined modestly post-LLIN relative to pre-LLIN (East Sepik: Rs  = 7.1-6.4, HE  = 0.77-0.71; Madang: Rs  = 8.2-6.1, HE  = 0.79-0.71). Unexpectedly, population structure present in pre-LLIN populations was lost post-LLIN, suggesting that more frequent human movement between provinces may have contributed to higher gene flow. Pv prevalence initially declined but increased again in one province, yet diversity remained high throughout the study period (East Sepik: Rs  = 11.4-9.3, HE  = 0.83-0.80; Madang: Rs  = 12.2-14.5, HE  = 0.85-0.88). Although genetic differentiation values increased between provinces over time, no significant population structure was observed at any time point. For both species, a decline in multiple infections and increasing clonal transmission and significant multilocus linkage disequilibrium post-LLIN were positive indicators of impact on the parasite population using microsatellite markers. These parameters may be useful adjuncts to traditional epidemiological tools in the early stages of transmission reduction.
  • Item
    Thumbnail Image
    Sustained Malaria Control Over an 8-Year Period in Papua New Guinea: The Challenge of Low-Density Asymptomatic Plasmodium Infections
    Koepfli, C ; Ome-Kaius, M ; Jally, S ; Malau, E ; Maripal, S ; Ginny, J ; Timinao, L ; Kattenberg, JH ; Obadia, T ; White, M ; Rarau, P ; Senn, N ; Barry, AE ; Kazura, JW ; Mueller, I ; Robinson, LJ (OXFORD UNIV PRESS INC, 2017-12-01)
    BACKGROUND: The scale-up of effective malaria control in the last decade has resulted in a substantial decline in the incidence of clinical malaria in many countries. The effects on the proportions of asymptomatic and submicroscopic infections and on transmission potential are yet poorly understood. METHODS: In Papua New Guinea, vector control has been intensified since 2008, and improved diagnosis and treatment was introduced in 2012. Cross-sectional surveys were conducted in Madang Province in 2006 (with 1280 survey participants), 2010 (with 2117 participants), and 2014 (with 2516 participants). Infections were quantified by highly sensitive quantitative polymerase chain reaction (PCR) analysis, and gametocytes were quantified by reverse-transcription qPCR analysis. RESULTS: Plasmodium falciparum prevalence determined by qPCR decreased from 42% in 2006 to 9% in 2014. The P. vivax prevalence decreased from 42% in 2006 to 13% in 2010 but then increased to 20% in 2014. Parasite densities decreased 5-fold from 2006 to 2010; 72% of P. falciparum and 87% of P. vivax infections were submicroscopic in 2014. Gametocyte density and positivity correlated closely with parasitemia, and population gametocyte prevalence decreased 3-fold for P. falciparum and 29% for P. vivax from 2010 to 2014. CONCLUSIONS: Sustained control has resulted in reduced malaria transmission potential, but an increasing proportion of gametocyte carriers are asymptomatic and submicroscopic and represent a challenge to malaria control.
  • Item
    Thumbnail Image
    Blood-Stage Parasitaemia and Age Determine Plasmodium falciparum and P-vivax Gametocytaemia in Papua New Guinea
    Koepfli, C ; Robinson, LJ ; Rarau, P ; Salib, M ; Sambale, N ; Wampfler, R ; Betuela, I ; Nuitragool, W ; Barry, AE ; Siba, P ; Felger, I ; Mueller, I ; Carvalho, LH (PUBLIC LIBRARY SCIENCE, 2015-05-21)
    A better understanding of human-to-mosquito transmission is crucial to control malaria. In order to assess factors associated with gametocyte carriage, 2083 samples were collected in a cross-sectional survey in Papua New Guinea. Plasmodium species were detected by light microscopy and qPCR and gametocytes by detection of pfs25 and pvs25 mRNA transcripts by reverse-transcriptase PCR (qRT-PCR). The parasite prevalence by PCR was 18.5% for Plasmodium falciparum and 13.0% for P. vivax. 52.5% of all infections were submicroscopic. Gametocytes were detected in 60% of P. falciparum-positive and 51% of P. vivax-positive samples. Each 10-fold increase in parasite density led to a 1.8-fold and 3.3-fold increase in the odds of carrying P. falciparum and P. vivax gametocytes. Thus the proportion of gametocyte positive and gametocyte densities was highest in young children carrying high asexual parasite densities and in symptomatic individuals. Dilution series of gametocytes allowed absolute quantification of gametocyte densities by qRT-PCR and showed that pvs25 expression is 10-20 fold lower than pfs25 expression. Between 2006 and 2010 parasite prevalence in the study site has decreased by half. 90% of the remaining infections were asymptomatic and likely constitute an important reservoir of transmission. However, mean gametocyte densities were low (approx. 1-2 gametocyte/μL) and it remains to be determined to what extent low-density gametocyte positive individuals are infective to mosquitos.