Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 65
  • Item
    Thumbnail Image
    The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells
    Froldi, F ; Szuperak, M ; Weng, C-F ; Shi, W ; Papenfuss, AT ; Cheng, LY (COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT, 2015-01-15)
    Cellular dedifferentiation is the regression of a cell from a specialized state to a more multipotent state and is implicated in cancer. However, the transcriptional network that prevents differentiated cells from reacquiring stem cell fate is so far unclear. Neuroblasts (NBs), the Drosophila neural stem cells, are a model for the regulation of stem cell self-renewal and differentiation. Here we show that the Drosophila zinc finger transcription factor Nervous fingers 1 (Nerfin-1) locks neurons into differentiation, preventing their reversion into NBs. Following Prospero-dependent neuronal specification in the ganglion mother cell (GMC), a Nerfin-1-specific transcriptional program maintains differentiation in the post-mitotic neurons. The loss of Nerfin-1 causes reversion to multipotency and results in tumors in several neural lineages. Both the onset and rate of neuronal dedifferentiation in nerfin-1 mutant lineages are dependent on Myc- and target of rapamycin (Tor)-mediated cellular growth. In addition, Nerfin-1 is required for NB differentiation at the end of neurogenesis. RNA sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) analysis show that Nerfin-1 administers its function by repression of self-renewing-specific and activation of differentiation-specific genes. Our findings support the model of bidirectional interconvertibility between neural stem cells and their post-mitotic progeny and highlight the importance of the Nerfin-1-regulated transcriptional program in neuronal maintenance.
  • Item
    No Preview Available
    TERT structural rearrangements in metastatic pheochromocytomas
    Dwight, T ; Flynn, A ; Amarasinghe, K ; Benn, DE ; Lupat, R ; Li, J ; Cameron, DL ; Hogg, A ; Balachander, S ; Candiloro, ILM ; Wong, SQ ; Robinson, BG ; Papenfuss, AT ; Gill, AJ ; Dobrovic, A ; Hicks, RJ ; Clifton-Bligh, RJ ; Tothill, RW (BIOSCIENTIFICA LTD, 2018-01)
    Pheochromocytomas (PC) and paragangliomas (PGL) are endocrine tumors for which the genetic and clinicopathological features of metastatic progression remain incompletely understood. As a result, the risk of metastasis from a primary tumor cannot be predicted. Early diagnosis of individuals at high risk of developing metastases is clinically important and the identification of new biomarkers that are predictive of metastatic potential is of high value. Activation of TERT has been associated with a number of malignant tumors, including PC/PGL. However, the mechanism of TERT activation in the majority of PC/PGL remains unclear. As TERT promoter mutations occur rarely in PC/PGL, we hypothesized that other mechanisms - such as structural variations - may underlie TERT activation in these tumors. From 35 PC and four PGL, we identified three primary PCs that developed metastases with elevated TERT expression, each of which lacked TERT promoter mutations and promoter DNA methylation. Using whole genome sequencing, we identified somatic structural alterations proximal to the TERT locus in two of these tumors. In both tumors, the genomic rearrangements led to the positioning of super-enhancers proximal to the TERT promoter, that are likely responsible for the activation of the normally tightly repressed TERT expression in chromaffin cells.
  • Item
    Thumbnail Image
    Detection of clinically relevant early genomic lesions in B-cell malignancies from circulating tumour DNA using a single hybridisation-based next generation sequencing assay
    Blombery, PA ; Ryland, GL ; Markham, J ; Guinto, J ; Wall, M ; McBean, M ; Jones, K ; Thompson, ER ; Cameron, DL ; Papenfuss, AT ; Prince, MH ; Dickinson, M ; Westerman, DA (WILEY, 2018-10)
  • Item
    Thumbnail Image
    Higher frequency of vertebrate-infecting viruses in the gut of infants born to mothers with type 1 diabetes
    Kim, KW ; Allen, DW ; Briese, T ; Couper, JJ ; Barry, SC ; Colman, PG ; Cotterill, AM ; Davis, EA ; Giles, LC ; Harrison, LC ; Harris, M ; Haynes, A ; Horton, JL ; Isaacs, SR ; Jain, K ; Lipkin, WI ; McGorm, K ; Morahan, G ; Morbey, C ; Pang, ICN ; Papenfuss, AT ; Penno, MAS ; Sinnott, RO ; Soldatos, G ; Thomson, RL ; Vuillermin, P ; Wentworth, JM ; Wilkins, MR ; Rawlinson, WD ; Craig, ME (WILEY, 2020-02-05)
    Background: Microbial exposures in utero and early life shape the infant microbiome, which can profoundly impact on health. Compared to the bacterial microbiome, very little is known about the virome. We set out to characterize longitudinal changes in the gut virome of healthy infants born to mothers with or without type 1 diabetes using comprehensive virome capture sequencing. Methods: Healthy infants were selected from Environmental Determinants of Islet Autoimmunity (ENDIA), a prospective cohort of Australian children with a first‐degree relative with type 1 diabetes, followed from pregnancy. Fecal specimens were collected three‐monthly in the first year of life. Results: Among 25 infants (44% born to mothers with type 1 diabetes) at least one virus was detected in 65% (65/100) of samples and 96% (24/25) of infants during the first year of life. In total, 26 genera of viruses were identified and >150 viruses were differentially abundant between the gut of infants with a mother with type 1 diabetes vs without. Positivity for any virus was associated with maternal type 1 diabetes and older infant age. Enterovirus was associated with older infant age and maternal smoking. Conclusions: We demonstrate a distinct gut virome profile in infants of mothers with type 1 diabetes, which may influence health outcomes later in life. Higher prevalence and greater number of viruses observed compared to previous studies suggests significant underrepresentation in existing virome datasets, arising most likely from less sensitive techniques used in data acquisition.
  • Item
    Thumbnail Image
    Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: A prospective cohort study
    Harbison, JE ; Roth-Schulze, AJ ; Giles, LC ; Tran, CD ; Ngui, KM ; Penno, MA ; Thomson, RL ; Wentworth, JM ; Colman, PG ; Craig, ME ; Morahan, G ; Papenfuss, AT ; Barry, SC ; Harrison, LC ; Couper, JJ (WILEY, 2019-08)
    AIMS/HYPOTHESIS: To investigate the longitudinal relationship between the gut microbiome, circulating short chain fatty acids (SCFAs) and intestinal permeability in children with islet autoimmunity or type 1 diabetes and controls. METHODS: We analyzed the gut bacterial microbiome, plasma SCFAs, small intestinal permeability and dietary intake in 47 children with islet autoimmunity or recent-onset type 1 diabetes and in 41 unrelated or sibling controls over a median (range) of 13 (2-34) months follow-up. RESULTS: Children with multiple islet autoantibodies (≥2 IA) or type 1 diabetes had gut microbiome dysbiosis. Anti-inflammatory Prevotella and Butyricimonas genera were less abundant and these changes were not explained by differences in diet. Small intestinal permeability measured by blood lactulose:rhamnose ratio was higher in type 1 diabetes. Children with ≥2 IA who progressed to type 1 diabetes (progressors), compared to those who did not progress, had higher intestinal permeability (mean [SE] difference +5.14 [2.0], 95% confidence interval [CI] 1.21, 9.07, P = .006), lower within-sample (alpha) microbial diversity (31.3 [11.2], 95% CI 9.3, 53.3, P = .005), and lower abundance of SCFA-producing bacteria. Alpha diversity (observed richness) correlated with plasma acetate levels in all groups combined (regression coefficient [SE] 0.57 [0.21], 95% CI 0.15, 0.99 P = .008). CONCLUSIONS/INTERPRETATION: Children with ≥2 IA who progress to diabetes, like those with recent-onset diabetes, have gut microbiome dysbiosis associated with increased intestinal permeability. Interventions that expand gut microbial diversity, in particular SCFA-producing bacteria, may have a role to decrease progression to diabetes in children at-risk.
  • Item
    Thumbnail Image
    Evolution of cnidarian trans-defensins: Sequence, structure and exploration of chemical space
    Mitchell, ML ; Shafee, T ; Papenfuss, AT ; Norton, RS (WILEY, 2019-07)
    Many of the small, cysteine-rich ion-channel modulatory peptides found in Cnidaria are distantly related to vertebrate defensins (of the trans-defensin superfamily). Transcriptomic and proteomic studies of the endemic Australian speckled sea anemone (Oulactis sp.) yielded homologous peptides to known defensin sequences. We extended these data using existing and custom-built hidden Markov models to extract defensin-like families from the transcriptomes of seven endemic Australian cnidarian species. Newly sequenced transcriptomes include three species of Actiniaria (true sea anemones); the speckled anemone (Oulactis sp.), Oulactis muscosa, Dofleinia cf. armata and a species of Corallimorpharia, Rhodactis sp. We analyzed these novel defensin-like sequences along with published homologues to study the evolution of their physico-chemical properties in vertebrate and invertebrate fauna. The cnidarian trans-defensins form a distinct cluster within the chemical space of the superfamily, with a unique set of motifs and biophysical properties. This cluster contains identifiable subgroups, whose distribution in chemical space also correlates with the divergent evolution of their structures. These sequences, currently restricted to cnidarians, form an evolutionarily distinct clade within the trans-defensin superfamily.
  • Item
    Thumbnail Image
    The inner ear proteome of fish
    Thomas, ORB ; Swearer, SE ; Kapp, EA ; Peng, P ; Tonkin-Hill, GQ ; Papenfuss, A ; Roberts, A ; Bernard, P ; Roberts, BR (WILEY, 2019-01)
    The mechanisms that underpin the formation, growth and composition of otoliths, the biomineralized stones in the inner ear of fish, are largely unknown, as only a few fish inner ear proteins have been reported. Using a partial transcriptome for the inner ear of black bream (Acanthopagrus butcheri), in conjunction with proteomic data, we discovered hundreds of previously unknown proteins in the otolith. This allowed us to develop hypotheses to explain the mechanisms of inorganic material supply and daily formation of growth bands. We further identified a likely protein mediator of crystal nucleation and an explanation for the apparent metabolic inertness of the otolith. Due to the formation of both daily and annual increments, otoliths are routinely employed as natural chronometers, being used for age and growth estimation, fisheries stock assessments, and the reconstruction of habitat use, movement, diet and the impacts of climate change. Our findings provide an unprecedented view of otolith molecular machinery, aiding in the interpretation of these essential archived data.
  • Item
    Thumbnail Image
    tidyHeatmap: an R package for modular heatmap production based on tidy principles
    Mangiola, S ; Papenfuss, A (The Open Journal, 2020-08-03)
  • Item
    Thumbnail Image
    Dual Plasmepsin-Targeting Antimalarial Agents Disrupt Multiple Stages of the Malaria Parasite Life Cycle
    Favuzza, P ; Ruiz, MDL ; Thompson, JK ; Triglia, T ; Ngo, A ; Steel, RWJ ; Vavrek, M ; Christensen, J ; Healer, J ; Boyce, C ; Guo, Z ; Hu, M ; Khan, T ; Murgolo, N ; Zhao, L ; Penington, JS ; Reaksudsan, K ; Jarman, K ; Dietrich, MH ; Richardson, L ; Guo, K-Y ; Lopaticki, S ; Tham, W-H ; Rottmann, M ; Papenfuss, T ; Robbins, JA ; Boddey, JA ; Sleebs, BE ; Sabroux, HJ ; McCauley, JA ; Olsen, DB ; Cowman, AF (CELL PRESS, 2020-04-08)
    Artemisin combination therapy (ACT) is the main treatment option for malaria, which is caused by the intracellular parasite Plasmodium. However, increased resistance to ACT highlights the importance of finding new drugs. Recently, the aspartic proteases Plasmepsin IX and X (PMIX and PMX) were identified as promising drug targets. In this study, we describe dual inhibitors of PMIX and PMX, including WM382, that block multiple stages of the Plasmodium life cycle. We demonstrate that PMX is a master modulator of merozoite invasion and direct maturation of proteins required for invasion, parasite development, and egress. Oral administration of WM382 cured mice of P. berghei and prevented blood infection from the liver. In addition, WM382 was efficacious against P. falciparum asexual infection in humanized mice and prevented transmission to mosquitoes. Selection of resistant P. falciparum in vitro was not achievable. Together, these show that dual PMIX and PMX inhibitors are promising candidates for malaria treatment and prevention.
  • Item
    Thumbnail Image
    Unifying package managers, workflow engines, and containers: Computational reproducibility with BioNix.
    Bedo, J ; Di Stefano, L ; Papenfuss, AT (BioMed Central, 2020-11-18)
    MOTIVATION: A challenge for computational biologists is to make our analyses reproducible-i.e. to rerun, combine, and share, with the assurance that equivalent runs will generate identical results. Current best practice aims at this using a combination of package managers, workflow engines, and containers. RESULTS: We present BioNix, a lightweight library built on the Nix deployment system. BioNix manages software dependencies, computational environments, and workflow stages together using a single abstraction: pure functions. This lets users specify workflows in a clean, uniform way, with strong reproducibility guarantees. AVAILABILITY AND IMPLEMENTATION: BioNix is implemented in the Nix expression language and is released on GitHub under the 3-clause BSD license: https://github.com/PapenfussLab/bionix (biotools:BioNix) (BioNix, RRID:SCR_017662).