Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros.
    Winandy, S ; Wu, L ; Wang, JH ; Georgopoulos, K (Rockefeller University Press, 1999-10-18)
    T cell differentiation relies on pre-T cell receptor (TCR) and TCR signaling events that take place at successive steps of the pathway. Here, we show that two of these T cell differentiation checkpoints are regulated by Ikaros. In the absence of Ikaros, double negative thymocytes can differentiate to the double positive stage without expression of a pre-TCR complex. Subsequent events in T cell development mediated by TCR involving transition from the double positive to the single positive stage are also regulated by Ikaros. Nonetheless, in Ikaros-deficient thymocytes, the requirement of pre-TCR expression for expansion of immature thymocytes as they progress to the double positive stage is still maintained, and the T cell malignancies that invariably arise in the thymus of Ikaros-deficient mice are dependent on either pre-TCR or TCR signaling. We conclude that Ikaros regulates T cell differentiation, selection, and homeostasis by providing signaling thresholds for pre-TCR and TCR.
  • Item
    Thumbnail Image
    Developmental potential of the earliest precursor cells from the adult mouse thymus.
    Wu, L ; Antica, M ; Johnson, GR ; Scollay, R ; Shortman, K (Rockefeller University Press, 1991-12-01)
    A new, numerically minute population of cells representing the earliest T precursor cells in the adult mouse thymus has recently been isolated. This population has been shown to be similar to bone marrow hemopoietic stem cells in surface antigenic phenotype and to express moderate levels of CD4. We now show, by fluorescence-activated cell sorting and intrathymic transfer to irradiated mice, that this apparently homogeneous population differs from multipotent stem cells in expressing the surface stem cell antigen 2 (Sca-2), that it differs from most early B lineage cells in lacking B220 and class II major histocompatibility complex expression, and that it binds rhodamine 123 like an activated rather than a quiescent cell. Irradiated recipient mice differing at the Ly 5 locus were used to compare the developmental potential of these early intrathymic precursors with bone marrow stem cells. Only T lineage product cells were detected when the intrathymic precursor population was transferred back into an irradiated thymus. However, when the intrathymic precursor population was transferred intravenously, it displayed the capacity to develop into both B and T lymphoid cells in recipient bone marrow, spleen, and lymph nodes, but no donor-derived myeloid cells were detected. The absence of myeloid and erythroid precursor activity was confirmed by showing that the intrathymic precursor population was unable to develop into myeloid or erythroid spleen colonies on intravenous transfer or to form colonies in an agar culture. These findings indicate that this earliest intrathymic precursor population has become restricted (or strongly biased) to lymphoid lineage development, but not exclusively to T lymphocytes.
  • Item
    Thumbnail Image
    Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny.
    Wu, L ; Li, CL ; Shortman, K (Rockefeller University Press, 1996-09-01)
    Successive T-precursors isolated from adult mouse thymus were examined for their developmental potential, by transfer to irradiated Ly 5-disparate recipients. The earliest, "low CD4" precursors formed T, B, and dendritic cells (DC), but not myeloid cells, in accordance with earlier studies. Surprisingly, the next downstream CD4-8-3 44+25+ precursor population still formed DC as well as T cells although it no longer formed B or myeloid cells. Further down-stream, the CD4-8 3-44-25+ population formed only T cells. The thymic and splenic DC progeny of the early thymic precursors all expressed high levels of CD8 alpha, in contrast with normal splenic DC and the splenic DC progeny of bone marrow stem cells, which consisted of both CD8 and CD8+ DC. A common precursor of T cells and of a subclass of DC is proposed, with CD8 alpha as a marker of the lymphoid-related DC lineage.
  • Item
    Thumbnail Image
    The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells.
    Vremec, D ; Zorbas, M ; Scollay, R ; Saunders, DJ ; Ardavin, CF ; Wu, L ; Shortman, K (Rockefeller University Press, 1992-07-01)
    A new procedure for rapid isolation of dendritic cells (DC) was devised, involving collagenase digestion of tissues, dissociation of lymphoid-DC complexes, selection of light-density cells, then depletion of lymphocytes and other non-DC by treatment with a mixture of lineage-specific monoclonal antibodies (mAbs) and removal with anti-immunoglobulin-coupled magnetic beads. This enriched population (approximately 80% DC) was further purified when required by fluorescence-activated cell sorting for cells expressing high levels of class II major histocompatibility complex (MHC). The isolated DC were characterized by immunofluorescent staining using a panel of 30 mAbs. Thymic DC were surface positive for a number of markers characteristic of T cells, but they were distinct from T-lineage cells in expressing high levels of class II MHC, in lacking expression of the T cell receptor (TCR)-CD3 complex, and having TCR beta and gamma genes in germline state. Splenic DC shared many markers with thymic DC, but were negative for most T cell markers, with the exception of CD8. A substantial proportion of DC from both thymus and spleen expressed CD8 at high levels, comparable with that on T cells. This appeared to be authentic CD8, and was produced by the DC themselves, since they contained CD8 alpha mRNA. Thymic DC presented both the CD8 alpha and beta chains on the cell surface (Ly-2+3+), although the alpha chain was in excess; the splenic DC expressed only the CD8 alpha chain (Ly-2+3-). It is suggested that the expression of CD8 could endow certain antigen-presenting DC with a veto function.
  • Item
    Thumbnail Image
    Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor.
    Saunders, D ; Lucas, K ; Ismaili, J ; Wu, L ; Maraskovsky, E ; Dunn, A ; Shortman, K (Rockefeller University Press, 1996-12-01)
    The earliest lymphoid precursor population in the adult mouse thymus had previously been shown to produce not only T cells, but also dendritic cell (DC) progeny on transfer to irradiated recipients. In this study, culture of these isolated thymic precursors with a mixture of cytokines induced them to proliferate and to differentiate to DC, but not to T lineage cells. At least 70% of the individual precursors had the capacity to form DC. The resultant DC were as effective as normal thymic DC in the functional test of T cell stimulation in mixed leukocyte cultures. The cultured DC also expressed high levels of class I and class II major histocompatibility complex, together with CD11c, DEC-205, CD80, and CD86, markers characteristic of mature DC in general. However, they did not express CD8 alpha or BP-1, markers characteristic of normal thymic DC. The optimized mixture of five to seven cytokines required for DC development from these thymic precursors did not include granulocyte/macrophage colony stimulating factor (GM-CSF), usually required for DC development in culture. The addition of anti-GM-CSF antibody or the use of precursors from GM-CSF-deficient mice did not prevent DC development. Addition of GM-CSF was without effect on DC yield when interleukin (IL) 3 and IL-7 were present, although some stimulation by GM-CSF was noted in their absence. In contrast, DC development was enhanced by addition of the Flt3/Flk2 ligand, in line with the effects of the administration of this cytokine in vivo. The results indicate that the development of a particular lineage of DC, probably those of lymphoid precursor origin, may be independent of the myeloid hormone GM-CSF.