Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Neither loss of Bik alone, nor combined loss of Bik and Noxa, accelerate murine lymphoma development or render lymphoma cells resistant to DNA damaging drugs
    Happo, L ; Phipson, B ; Smyth, GK ; Strasser, A ; Scott, CL (NATURE PUBLISHING GROUP, 2012-05)
    The pro-apoptotic BH3-only protein, BIK, is widely expressed and although many critical functions in developmental or stress-induced death have been ascribed to this protein, mice lacking Bik display no overt abnormalities. It has been postulated that Bik can serve as a tumour suppressor, on the basis that its deficiency and loss of apoptotic function have been reported in many human cancers, including lymphoid malignancies. Evasion of apoptosis is a major factor contributing to c-Myc-induced tumour development, but despite this, we found that Bik deficiency did not accelerate Eμ-Myc-induced lymphomagenesis. Co-operation between BIK and NOXA, another BH3-only protein, has been previously described, and was attributed to their complementary binding specificities to distinct subsets of pro-survival BCL-2 family proteins. Nevertheless, combined deficiency of Bik and Noxa did not alter the onset of Eμ-Myc transgene induced lymphoma development. Moreover, although p53-mediated induction of Bik has been reported, neither Eμ-Myc/Bik(-/-) nor Eμ-Myc/Bik(-/-)Noxa(-/-) lymphomas were more resistant than control Eμ-Myc lymphomas to killing by DNA damaging drugs, either in vitro or in vivo. These results suggest that Bik, even in combination with Noxa, is not a potent suppressor of c-Myc-driven tumourigenesis or critical for chemotherapeutic drug-induced killing of Myc-driven tumours.
  • Item
    Thumbnail Image
    The Zinc-finger protein ASCIZ regulates B cell development via DYNLL1 and Bim
    Jurado, S ; Gleeson, K ; O'Donnell, K ; Izon, DJ ; Walkley, CR ; Strasser, A ; Tarlinton, DM ; Heierhorst, J (ROCKEFELLER UNIV PRESS, 2012-08-27)
    Developing B lymphocytes expressing defective or autoreactive pre-B or B cell receptors (BCRs) are eliminated by programmed cell death, but how the balance between death and survival signals is regulated to prevent immunodeficiency and autoimmunity remains incompletely understood. In this study, we show that absence of the essential ATM (ataxia telangiectasia mutated) substrate Chk2-interacting Zn(2+)-finger protein (ASCIZ; also known as ATMIN/ZNF822), a protein with dual functions in the DNA damage response and as a transcription factor, leads to progressive cell loss from the pre-B stage onwards and severely diminished splenic B cell numbers in mice. This lymphopenia cannot be suppressed by deletion of p53 or complementation with a prearranged BCR, indicating that it is not caused by impaired DNA damage responses or defective V(D)J recombination. Instead, ASCIZ-deficient B cell precursors contain highly reduced levels of DYNLL1 (dynein light chain 1; LC8), a recently identified transcriptional target of ASCIZ, and normal B cell development can be restored by ectopic Dynll1 expression. Remarkably, the B cell lymphopenia in the absence of ASCIZ can also be fully suppressed by deletion of the proapoptotic DYNLL1 target Bim. Our findings demonstrate a key role for ASCIZ in regulating the survival of developing B cells by activating DYNLL1 expression, which may then modulate Bim-dependent apoptosis.
  • Item
    Thumbnail Image
    Translation inhibitors induce cell death by multiple mechanisms and Mcl-1 reduction is only a minor contributor
    Lindqvist, LM ; Vikstroem, I ; Chambers, JM ; McArthur, K ; Anderson, MA ; Henley, KJ ; Happo, L ; Cluse, L ; Johnstone, RW ; Roberts, AW ; Kile, BT ; Croker, BA ; Burns, CJ ; Rizzacasa, MA ; Strasser, A ; Huang, DCS (NATURE PUBLISHING GROUP, 2012-10)
    There is significant interest in treating cancers by blocking protein synthesis, to which hematological malignancies seem particularly sensitive. The translation elongation inhibitor homoharringtonine (Omacetaxine mepesuccinate) is undergoing clinical trials for chronic myeloid leukemia, whereas the translation initiation inhibitor silvestrol has shown promise in mouse models of cancer. Precisely how these compounds induce cell death is unclear, but reduction in Mcl-1, a labile pro-survival Bcl-2 family member, has been proposed to constitute the critical event. Moreover, the contribution of translation inhibitors to neutropenia and lymphopenia has not been precisely defined. Herein, we demonstrate that primary B cells and neutrophils are highly sensitive to translation inhibitors, which trigger the Bax/Bak-mediated apoptotic pathway. However, contrary to expectations, reduction of Mcl-1 did not significantly enhance cytotoxicity of these compounds, suggesting that it does not have a principal role and cautions that strong correlations do not always signify causality. On the other hand, the killing of T lymphocytes was less dependent on Bax and Bak, indicating that translation inhibitors can also induce cell death via alternative mechanisms. Indeed, loss of clonogenic survival proved to be independent of the Bax/Bak-mediated apoptosis altogether. Our findings warn of potential toxicity as these translation inhibitors are cytotoxic to many differentiated non-cycling cells.
  • Item
    Thumbnail Image
    Detection of Bcl-2 family member Bcl-G in mouse tissues using new monoclonal antibodies
    Giam, M ; Mintern, JD ; Rautureau, GJP ; Hinds, MG ; Strasser, A ; Bouillet, P (NATURE PUBLISHING GROUP, 2012-08)
    Bcl-G is an evolutionarily conserved member of the Bcl-2 family of proteins that has been implicated in regulating apoptosis and cancer. We have generated monoclonal antibodies that specifically recognise mouse Bcl-G and have used these reagents to analyse its tissue distribution and subcellular localisation using western blotting, immunohistochemistry and immunofluorescence. We found that Bcl-G predominantly resides in the cytoplasm and is present in a wide range of mouse tissues, including the spleen, thymus, lung, intestine and testis. Immunohistochemical analyses revealed that Bcl-G is expressed highly in mature spermatids in the testis, CD8(+) conventional dendritic cells (DCs) in hematopoietic tissues and diverse epithelial cell types, including those lining the gastrointestinal and respiratory tracts. The Bcl-G monoclonal antibodies represent new tools for studying this protein, using a variety of techniques, including immunoprecipitation and flow cytometry.
  • Item
    Thumbnail Image
    Bcl-2 family member Bcl-G is not a proapoptotic protein
    Giam, M ; Okamoto, T ; Mintern, JD ; Strasser, A ; Bouillet, P (NATURE PUBLISHING GROUP, 2012-10)
    The three major subgroups of the Bcl-2 family, including the prosurvival Bcl-2-like proteins, the proapoptotic Bcl-2 homology (BH)3-only proteins and Bax/Bak proteins, regulate the mitochondrial apoptotic pathway. In addition, some outliers within the Bcl-2 family do not fit into these subgroups. One of them, Bcl-G, has a BH2 and a BH3 region, and was proposed to trigger apoptosis. To investigate the physiological role of Bcl-G, we have inactivated the gene in the mouse and generated monoclonal antibodies to determine its expression. Although two isoforms of Bcl-G exist in human, only one is found in mice. mBcl-G is expressed in a range of epithelial as well as in dendritic cells. Loss of Bcl-G did not appear to affect any of these cell types. mBcl-G only binds weakly to prosurvival members of the Bcl-2 family, and in a manner that is independent of its BH3 domain. To understand what the physiological role of Bcl-G might be, we searched for Bcl-G-binding partners through immunoprecipitation/mass spectroscopy and yeast-two-hybrid screening. Although we did not uncover any Bcl-2 family member in these screens, we found that Bcl-G interacts specifically with proteins of the transport particle protein complex. We conclude that Bcl-G most probably does not function in the classical stress-induced apoptosis pathway, but rather has a role in protein trafficking inside the cell.
  • Item
    Thumbnail Image
    The Role of the Apoptotic Machinery in Tumor Suppression
    Delbridge, Alexis ; VALENTE, ELIZABETH ; STRASSER, ANDREAS ( 2012)
  • Item
    Thumbnail Image
    Translation inhibitors induce cell death by multiple mechanisms and Mcl-1 reduction is only a minor contributor
    Lindqvist, L. M. ; Vikström, I. ; Chambers, J. M. ; McArthur, K. ; Anderson, M. Ann ; Henley, K. J. ; HAPPO, LINA ; Cluse, L. ; Johnstone, R. W. ; Roberts, A. W. ; Kile, B. T. ; Croker, B. A. ; Burns, C. J. ; Rizzacasa, M. A. ; STRASSER, ANDREAS ; Huang, D. C. S. (Nature/Macmillan, 2012)