Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 27
  • Item
    Thumbnail Image
    MicroRNA-21 is immunosuppressive and pro-metastatic via separate mechanisms
    Chi, LH ; Cross, RSN ; Redvers, RP ; Davis, M ; Hediyeh-zadeh, S ; Mathivanan, S ; Samuel, M ; Lucas, EC ; Mouchemore, K ; Gregory, PA ; Johnstone, CN ; Anderson, RL (SPRINGERNATURE, 2022-07-11)
    MiR-21 was identified as a gene whose expression correlated with the extent of metastasis of murine mammary tumours. Since miR-21 is recognised as being associated with poor prognosis in cancer, we investigated its contribution to mammary tumour growth and metastasis in tumours with capacity for spontaneous metastasis. Unexpectedly, we found that suppression of miR-21 activity in highly metastatic tumours resulted in regression of primary tumour growth in immunocompetent mice but did not impede growth in immunocompromised mice. Analysis of the immune infiltrate of the primary tumours at the time when the tumours started to regress revealed an influx of both CD4+ and CD8+ activated T cells and a reduction in PD-L1+ infiltrating monocytes, providing an explanation for the observed tumour regression. Loss of anti-tumour immune suppression caused by decreased miR-21 activity was confirmed by transcriptomic analysis of primary tumours. This analysis also revealed reduced expression of genes associated with cell cycle progression upon loss of miR-21 activity. A second activity of miR-21 was the promotion of metastasis as shown by the loss of metastatic capacity of miR-21 knockdown tumours established in immunocompromised mice, despite no impact on primary tumour growth. A proteomic analysis of tumour cells with altered miR-21 activity revealed deregulation of proteins known to be associated with tumour progression. The development of therapies targeting miR-21, possibly via targeted delivery to tumour cells, could be an effective therapy to combat primary tumour growth and suppress the development of metastatic disease.
  • Item
    Thumbnail Image
    Functional divergence of the two Elongator subcomplexes during neurodevelopment
    Gaik, M ; Kojic, M ; Stegeman, MR ; Oncu-Oner, T ; Koscielniak, A ; Jones, A ; Mohamed, A ; Chau, PYS ; Sharmin, S ; Chramiec-Glabik, A ; Indyka, P ; Biela, A ; Dobosz, D ; Millar, A ; Chau, V ; Unalp, A ; Piper, M ; Bellingham, MC ; Eichler, EE ; Nickerson, DA ; Guleryuz, H ; Abbassi, NEH ; Jazgar, K ; Davis, MJ ; Mercimek-Andrews, S ; Cingoz, S ; Wainwright, BJ ; Glatt, S (WILEY, 2022-07-07)
    The highly conserved Elongator complex is a translational regulator that plays a critical role in neurodevelopment, neurological diseases, and brain tumors. Numerous clinically relevant variants have been reported in the catalytic Elp123 subcomplex, while no missense mutations in the accessory subcomplex Elp456 have been described. Here, we identify ELP4 and ELP6 variants in patients with developmental delay, epilepsy, intellectual disability, and motor dysfunction. We determine the structures of human and murine Elp456 subcomplexes and locate the mutated residues. We show that patient-derived mutations in Elp456 affect the tRNA modification activity of Elongator in vitro as well as in human and murine cells. Modeling the pathogenic variants in mice recapitulates the clinical features of the patients and reveals neuropathology that differs from the one caused by previously characterized Elp123 mutations. Our study demonstrates a direct correlation between Elp4 and Elp6 mutations, reduced Elongator activity, and neurological defects. Foremost, our data indicate previously unrecognized differences of the Elp123 and Elp456 subcomplexes for individual tRNA species, in different cell types and in different key steps during the neurodevelopment of higher organisms.
  • Item
    No Preview Available
    Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma
    Jacquelot, N ; Seillet, C ; Wang, M ; Pizzolla, A ; Liao, Y ; Hediyeh-zadeh, S ; Grisaru-Tal, S ; Louis, C ; Huang, Q ; Schreuder, J ; Souza-Fonseca-Guimaraes, F ; de Graaf, CA ; Thia, K ; Macdonald, S ; Camilleri, M ; Luong, K ; Zhang, S ; Chopin, M ; Molden-Hauer, T ; Nutt, SL ; Umansky, V ; Ciric, B ; Groom, JR ; Foster, PS ; Hansbro, PM ; McKenzie, ANJ ; Gray, DHD ; Behren, A ; Cebon, J ; Vivier, E ; Wicks, IP ; Trapani, JA ; Munitz, A ; Davis, MJ ; Shi, W ; Neeson, PJ ; Belz, GT (NATURE PORTFOLIO, 2021-07)
    Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies.
  • Item
    Thumbnail Image
    SFPQ-ABL1 and BCR-ABL1 use different signaling networks to drive B-cell acute lymphoblastic leukemia
    Brown, LM ; Hediyeh-Zadeh, S ; Sadras, T ; Huckstep, H ; Sandow, JJ ; Bartolo, RC ; Kosasih, HJ ; Davidson, NM ; Schmidt, B ; Bjelosevic, S ; Johnstone, R ; Webb, A ; Khaw, SL ; Oshlack, A ; Davis, MJ ; Ekert, PG (ELSEVIER, 2022-04-12)
    Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile resembling Philadelphia chromosome-positive ALL (Ph+ ALL) in the absence of BCR-ABL1. Tyrosine kinase-activating fusions, some involving ABL1, are recurrent drivers of Ph-like ALL and are targetable with tyrosine kinase inhibitors (TKIs). We identified a rare instance of SFPQ-ABL1 in a child with Ph-like ALL. SFPQ-ABL1 expressed in cytokine-dependent cell lines was sufficient to transform cells and these cells were sensitive to ABL1-targeting TKIs. In contrast to BCR-ABL1, SFPQ-ABL1 localized to the nuclear compartment and was a weaker driver of cellular proliferation. Phosphoproteomics analysis showed upregulation of cell cycle, DNA replication, and spliceosome pathways, and downregulation of signal transduction pathways, including ErbB, NF-κB, vascular endothelial growth factor (VEGF), and MAPK signaling in SFPQ-ABL1-expressing cells compared with BCR-ABL1-expressing cells. SFPQ-ABL1 expression did not activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling and was associated with phosphorylation of G2/M cell cycle proteins. SFPQ-ABL1 was sensitive to navitoclax and S-63845 and promotes cell survival by maintaining expression of Mcl-1 and Bcl-xL. SFPQ-ABL1 has functionally distinct mechanisms by which it drives ALL, including subcellular localization, proliferative capacity, and activation of cellular pathways. These findings highlight the role that fusion partners have in mediating the function of ABL1 fusions.
  • Item
    Thumbnail Image
    Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin
    Berthelet, J ; Foroutan, M ; Bhuva, DD ; Whitfield, HJ ; El-Saafin, F ; Cursons, J ; Serrano, A ; Merdas, M ; Lim, E ; Charafe-Jauffret, E ; Ginestier, C ; Ernst, M ; Hollande, F ; Anderson, RL ; Pal, B ; Yeo, B ; Davis, MJ ; Merino, D (MDPI, 2022-05)
    The development of therapies that target specific disease subtypes has dramatically improved outcomes for patients with breast cancer. However, survival gains have not been uniform across patients, even within a given molecular subtype. Large collections of publicly available drug screening data matched with transcriptomic measurements have facilitated the development of computational models that predict response to therapy. Here, we generated a series of predictive gene signatures to estimate the sensitivity of breast cancer samples to 90 drugs, comprising FDA-approved drugs or compounds in early development. To achieve this, we used a cell line-based drug screen with matched transcriptomic data to derive in silico models that we validated in large independent datasets obtained from cell lines and patient-derived xenograft (PDX) models. Robust computational signatures were obtained for 28 drugs and used to predict drug efficacy in a set of PDX models. We found that our signature for cisplatin can be used to identify tumors that are likely to respond to this drug, even in absence of the BRCA-1 mutation routinely used to select patients for platinum-based therapies. This clinically relevant observation was confirmed in multiple PDXs. Our study foreshadows an effective delivery approach for precision medicine.
  • Item
    Thumbnail Image
    Characterization of the treatment-naive immune microenvironment in melanoma with BRAF mutation
    Wang, M ; Zadeh, S ; Pizzolla, A ; Thia, K ; Gyorki, DE ; McArthur, GA ; Scolyer, RA ; Long, G ; Wilmott, JS ; Andrews, MC ; Au-Yeung, G ; Weppler, A ; Sandhu, S ; Trapani, JA ; Davis, MJ ; Neeson, PJ (BMJ PUBLISHING GROUP, 2022-04)
    BACKGROUND: Patients with BRAF-mutant and wild-type melanoma have different response rates to immune checkpoint blockade therapy. However, the reasons for this remain unknown. To address this issue, we investigated the precise immune composition resulting from BRAF mutation in treatment-naive melanoma to determine whether this may be a driver for different response to immunotherapy. METHODS: In this study, we characterized the treatment-naive immune context in patients with BRAF-mutant and BRAF wild-type (BRAF-wt) melanoma using data from single-cell RNA sequencing, bulk RNA sequencing, flow cytometry and immunohistochemistry (IHC). RESULTS: In single-cell data, BRAF-mutant melanoma displayed a significantly reduced infiltration of CD8+ T cells and macrophages but also increased B cells, natural killer (NK) cells and NKT cells. We then validated this finding using bulk RNA-seq data from the skin cutaneous melanoma cohort in The Cancer Genome Atlas and deconvoluted the data using seven different algorithms. Interestingly, BRAF-mutant tumors had more CD4+ T cells than BRAF-wt samples in both primary and metastatic cohorts. In the metastatic cohort, BRAF-mutant melanoma demonstrated more B cells but less CD8+ T cell infiltration when compared with BRAF-wt samples. In addition, we further investigated the immune cell infiltrate using flow cytometry and multiplex IHC techniques. We confirmed that BRAF-mutant melanoma metastases were enriched for CD4+ T cells and B cells and had a co-existing decrease in CD8+ T cells. Furthermore, we then identified B cells were associated with a trend for improved survival (p=0.078) in the BRAF-mutant samples and Th2 cells were associated with prolonged survival in the BRAF-wt samples. CONCLUSIONS: In conclusion, treatment-naive BRAF-mutant melanoma has a distinct immune context compared with BRAF-wt melanoma, with significantly decreased CD8+ T cells and increased B cells and CD4+ T cells in the tumor microenvironment. These findings indicate that further mechanistic studies are warranted to reveal how this difference in immune context leads to improved outcome to combination immune checkpoint blockade in BRAF-mutant melanoma.
  • Item
    Thumbnail Image
    Profiling of lung SARS-CoV-2 and influenza virus infection dissects virus-specific host responses and gene signatures
    Kulasinghe, A ; Tan, CW ; Miggiolaro, AFRDS ; Monkman, J ; SadeghiRad, H ; Bhuva, DD ; Junior, JDSM ; de Paula, CBV ; Nagashima, S ; Baena, CP ; Souza-Fonseca-Guimaraes, P ; de Noronha, L ; McCulloch, T ; Rossi, GR ; Cooper, C ; Tang, B ; Short, KR ; Davis, MJ ; Souza-Fonseca-Guimaraes, F ; Belz, GT ; O'Byrne, K (EUROPEAN RESPIRATORY SOC JOURNALS LTD, 2022-06-01)
    BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in late 2019 has spread globally, causing a pandemic of respiratory illness designated coronavirus disease 2019 (COVID-19). A better definition of the pulmonary host response to SARS-CoV-2 infection is required to understand viral pathogenesis and to validate putative COVID-19 biomarkers that have been proposed in clinical studies. METHODS: Here, we use targeted transcriptomics of formalin-fixed paraffin-embedded tissue using the NanoString GeoMX platform to generate an in-depth picture of the pulmonary transcriptional landscape of COVID-19, pandemic H1N1 influenza and uninfected control patients. RESULTS: Host transcriptomics showed a significant upregulation of genes associated with inflammation, type I interferon production, coagulation and angiogenesis in the lungs of COVID-19 patients compared to non-infected controls. SARS-CoV-2 was non-uniformly distributed in lungs (emphasising the advantages of spatial transcriptomics) with the areas of high viral load associated with an increased type I interferon response. Once the dominant cell type present in the sample, within patient correlations and patient-patient variation, had been controlled for, only a very limited number of genes were differentially expressed between the lungs of fatal influenza and COVID-19 patients. Strikingly, the interferon-associated gene IFI27, previously identified as a useful blood biomarker to differentiate bacterial and viral lung infections, was significantly upregulated in the lungs of COVID-19 patients compared to patients with influenza. CONCLUSION: Collectively, these data demonstrate that spatial transcriptomics is a powerful tool to identify novel gene signatures within tissues, offering new insights into the pathogenesis of SARS-COV-2 to aid in patient triage and treatment.
  • Item
    Thumbnail Image
    Dissection of the bone marrow microenvironment in hairy cell leukaemia identifies prognostic tumour and immune related biomarkers
    Koldej, RM ; Prabahran, A ; Tan, CW ; Ng, AP ; Davis, MJ ; Ritchie, DS (NATURE PORTFOLIO, 2021-09-24)
    Hairy cell leukaemia (HCL) is a rare CD20+ B cell malignancy characterised by rare "hairy" B cells and extensive bone marrow (BM) infiltration. Frontline treatment with the purine analogue cladribine (CDA) results in a highly variable response duration. We hypothesised that analysis of the BM tumour microenvironment would identify prognostic biomarkers of response to CDA. HCL BM immunology pre and post CDA treatment and healthy controls were analysed using Digital Spatial Profiling to assess the expression of 57 proteins using an immunology panel. A bioinformatics pipeline was developed to accommodate the more complex experimental design of a spatially resolved study. Treatment with CDA was associated with the reduction in expression of HCL tumour markers (CD20, CD11c) and increased expression of myeloid markers (CD14, CD68, CD66b, ARG1). Expression of HLA-DR, STING, CTLA4, VISTA, OX40L were dysregulated pre- and post-CDA. Duration of response to treatment was associated with greater reduction in tumour burden and infiltration by CD8 T cells into the BM post-CDA. This is the first study to provide a high multiplex analysis of HCL BM microenvironment demonstrating significant immune dysregulation and identify biomarkers of response to CDA. With validation in future studies, prospective application of these biomarkers could allow early identification and increased monitoring in patients at increased relapse risk post CDA.
  • Item
    Thumbnail Image
    PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling (vol 13, 58, 2021)
    Yao, B ; Gui, T ; Zeng, X ; Deng, Y ; Wang, Z ; Wang, Y ; Yang, D ; Li, Q ; Xu, P ; Hu, R ; Li, X ; Chen, B ; Wang, J ; Zen, K ; Li, H ; Davis, MJ ; Herold, MJ ; Pan, H-F ; Jiang, Z-W ; Huang, DCS ; Liu, M ; Ju, J ; Zhao, Q (BMC, 2021-10-04)
  • Item
    Thumbnail Image
    Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT
    Elangovan, A ; Li, Y ; Pires, DE ; Davis, MJ ; Verspoor, K (BMC, 2022-01-04)
    MOTIVATION: Protein-protein interactions (PPIs) are critical to normal cellular function and are related to many disease pathways. A range of protein functions are mediated and regulated by protein interactions through post-translational modifications (PTM). However, only 4% of PPIs are annotated with PTMs in biological knowledge databases such as IntAct, mainly performed through manual curation, which is neither time- nor cost-effective. Here we aim to facilitate annotation by extracting PPIs along with their pairwise PTM from the literature by using distantly supervised training data using deep learning to aid human curation. METHOD: We use the IntAct PPI database to create a distant supervised dataset annotated with interacting protein pairs, their corresponding PTM type, and associated abstracts from the PubMed database. We train an ensemble of BioBERT models-dubbed PPI-BioBERT-x10-to improve confidence calibration. We extend the use of ensemble average confidence approach with confidence variation to counteract the effects of class imbalance to extract high confidence predictions. RESULTS AND CONCLUSION: The PPI-BioBERT-x10 model evaluated on the test set resulted in a modest F1-micro 41.3 (P =5 8.1, R = 32.1). However, by combining high confidence and low variation to identify high quality predictions, tuning the predictions for precision, we retained 19% of the test predictions with 100% precision. We evaluated PPI-BioBERT-x10 on 18 million PubMed abstracts and extracted 1.6 million (546507 unique PTM-PPI triplets) PTM-PPI predictions, and filter [Formula: see text] (4584 unique) high confidence predictions. Of the 5700, human evaluation on a small randomly sampled subset shows that the precision drops to 33.7% despite confidence calibration and highlights the challenges of generalisability beyond the test set even with confidence calibration. We circumvent the problem by only including predictions associated with multiple papers, improving the precision to 58.8%. In this work, we highlight the benefits and challenges of deep learning-based text mining in practice, and the need for increased emphasis on confidence calibration to facilitate human curation efforts.