Veterinary Clinical Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Changes in Thoroughbred speed and stride characteristics over successive race starts and their association with musculoskeletal injury
    Wong, ASM ; Morrice-West, A ; Whitton, RC ; Hitchens, PL (WILEY, 2023-03)
    BACKGROUND: Certain stride characteristics have been shown to affect changes in biomechanical factors that are associated with injuries in human athletes. Determining the relationship between stride characteristics and musculoskeletal injury (MSI) may be key in limiting injury occurrence in the racehorse. OBJECTIVES: This study aimed to determine whether changes in race day speed and stride characteristics over career race starts are associated with an increased risk of MSI in racehorses. STUDY DESIGN: Case-control study. METHODS: Speed, stride length, and stride frequency data were obtained from the final 200 m sectional of n = 5660 race starts by n = 584 horses (case n = 146, control n = 438). Multivariable joint models, combining longitudinal and survival (time to injury) analysis, were generated. Hazard ratios and their 95% confidence intervals (CI) are presented. RESULTS: The risk of MSI increased by 1.18 (95% CI 1.09, 1.28; P < 0.001) for each 0.1 m/s decrease in speed and by 1.11 (95% CI 1.02, 1.21; P = 0.01) for each 10 cm decrease in stride length over time (career race starts). A more marked rate of decline in speed and stride length was observed approximately 6 races prior to injury. Risk of MSI was highest early in the horse's racing career. MAIN LIMITATIONS: Only final sectional stride characteristics were assessed in the model. The model did not account for time between race starts. CONCLUSIONS: Decreasing speed and stride length over multiple races is associated with MSI in racehorses. Monitoring stride characteristics over time may be beneficial for the early detection of MSI.
  • Item
    Thumbnail Image
    Association of Thoroughbred Racehorse Workloads and Rest Practices with Trainer Success
    Morrice-West, AV ; Hitchens, PL ; Walmsley, EA ; Wong, ASM ; Whitton, RC (MDPI, 2021-11)
    Understanding the relationship between the training practices of Thoroughbred racehorses and race performance is important to ensure advice given to trainers for injury prevention or management is practical and consistent. We assessed associations between intended volume and speed of gallop training (i.e., typical workloads for horses free of injury or other performance limiting conditions) and rest practices on official trainer career and previous season success rates (rate of wins and places, prizemoney per start). Sixty-six Australian Thoroughbred trainers were surveyed. Multivariable negative binomial regression models were employed for the outcomes career and previous season wins and places, and linear regression models for prizemoney per start. Intended training workload was not associated with prizemoney. Pre-trial total galloping distances (≥13.3 m/s) between 7500 m and 15,000 m were associated with a higher rate of career wins, and previous season wins and places per start (p < 0.05). Slow-speed (13.3-14.3 m/s) galloping distance to trial between 5000 m to 12,500 m was associated with higher rate of career placings per start, with reduced performance over 12,500 m (p = 0.003). Greater time between race starts was associated with a greater rate of previous season wins and prizemoney per start until three weeks between starts, with decline in performance thereafter (p < 0.05). Greater frequency of rest breaks was associated with greater prizemoney per start earnt in the previous season (p ≤ 0.01). These results suggest that modifications to training programs aimed at injury prevention, such as avoiding long galloping distances, should not adversely affect trainer success.
  • Item
    Thumbnail Image
    Microstructural properties of the proximal sesamoid bones of Thoroughbred racehorses in training
    Ayodele, BA ; Hitchens, PL ; Wong, ASM ; Mackie, EJ ; Whitton, RC (WILEY, 2021-11)
    BACKGROUND: Proximal sesamoid bone fractures are common catastrophic injuries in racehorses. Understanding the response of proximal sesamoid bones to race training can inform fracture prevention strategies. OBJECTIVES: To describe proximal sesamoid bone microstructure of racehorses and to investigate the associations between microstructure and racing histories. STUDY DESIGN: Cross-sectional. METHODS: Proximal sesamoid bones from 63 Thoroughbred racehorses were imaged using micro-computed tomography. Bone volume fraction (BVTV) and bone material density (BMD) of the whole bone and four regions (apical, midbody dorsal, midbody palmar and basilar) were determined. Generalised linear regression models were used to identify the associations between bone parameters and race histories of the horses. RESULTS: The mean sesamoid BVTV was 0.79 ± 0.08 and BMD was 806.02 ± 24.66 mg HA/ccm. BVTV was greater in medial sesamoids compared with lateral sesamoids (0.80 ± 0.07 vs 0.79 ± 0.08; P < .001) predominantly due to differences in the apical region (medial-0.76 ± 0.08 vs lateral-0.72 ± 0.07; P < .001). BVTV in the midbody dorsal region (0.86 ± 0.06) was greater than other regions (midbody palmar-0.79 ± 0.07, basilar-0.78 ± 0.06 and apical-0.74 ± 0.08; P < .001). BVTV was greater in sesamoids with more microcracks on their articular surface (Coef. 0.005; 95% CI 0.001, 0.009; P = .01), greater extent of bone resorption on their abaxial surface (Grade 2-0.82 ± 0.05 vs Grade 1-0.80 ± 0.05 or Grade 0-0.79 ± 0.06; P = .006), in horses with a low (0.82 ± 0.07) or mid handicap rating (0.78 ± 0.08) compared with high rating (0.76 ± 0.07; P < .001), in 2- to 5-year-old horses (0.81 ± 0.07) compared with younger (0.68 ± 0.08) or older horses (0.77 ± 0.08; P < .001) and in horses that commenced their racing career at less than 4 years of age (0.79 ± 0.08 vs 0.77 ± 0.77; P < .001). BMD was greater in the midbody dorsal (828.6 ± 19.6 mg HA/ccm) compared with other regions (apical-805.8 ± 21.8, midbody palmar-804.7 ± 18.4 and basilar-785.0 ± 17.1; P < .001), in horses with a handicap rating (low-812.1 ± 20.0, mid-821.8 ± 21.3 and high-814.6 ± 19.4) compared with those with no rating (791.08 ± 24.4, P < .001), in females (806.7 ± 22.0) and geldings (812.2 ± 22.4) compared with entires (792.7 ± 26.2; P = .02) and in older horses (<2-year-old-763.7 ± 24.8 vs 2- to 5-year-old-802.7 ± 23.4, and 6- to 12-year-old-817.8 ± 20.0; P = .002). MAIN LIMITATIONS: Data were cross-sectional. CONCLUSIONS: Densification of the proximal sesamoid bones is associated with the commencement of racing in younger horses and the presence of bone fatigue-related pathology. Lower sesamoid BVTV was associated with longevity and better performance.
  • Item
    Thumbnail Image
    Variation in GPS and accelerometer recorded velocity and stride parameters of galloping Thoroughbred horses
    Morrice-West, AV ; Hitchens, PL ; Walmsley, EA ; Stevenson, MA ; Wong, ASM ; Whitton, RC (WILEY, 2021-09)
    BACKGROUND: With each stride, galloping horses generate large skeletal loads which influence bone physiology, and may contribute to musculoskeletal injury. Horse speed and stride characteristics are related, but the usefulness of using horse speed and distance travelled as a proxy for stride characteristics is unknown. OBJECTIVES: We aimed to determine stride characteristics, their variance and their relationship with speed in horses performing maximally. STUDY DESIGN: Retrospective cross-sectional analysis of archived data. METHODS: Stride characteristics obtained using GPS and inertial sensors in Thoroughbred horses were retrieved. Data per 200 m race segment ('sectionals') for horses competing in races (N = 25,259 race starts) were analysed to determine if speed predicted stride parameters. Multivariable mixed-effects linear regression models were fitted. RESULTS: Mean (±SD) stride length, stride count (number of strides per 200 m), duration and speed were 7.08 ± 0.39 m, 28.32 ± 1.56 strides/200 m, 0.43 ± 0.02 s/stride and 16.63 ± 1.04 m/s across all sectionals and starts. Speed and stride length decreased, and stride count increased with race progression (P < 0.001). Male sex, greater race distance, better finishing position and firmer track surfaces were associated with less strides per 200 m and longer stride durations. MAIN LIMITATIONS: Lack of an independent party validation of the measurement system used in this study. CONCLUSIONS: There was a substantial inter-horse variation in stride parameters, with speed predicting half or less of this variation. Speed alone does not fully explain stride characteristics in horses. Future studies aimed at investigating the impact of gait on bone biology and pathology would benefit from accounting for stride characteristics (eg length and duration).