Melbourne School of Psychological Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Perceptual change-of-mind decisions are sensitive to absolute evidence magnitude
    Turner, W ; Feuerriegel, D ; Andrejevic, M ; Hester, R ; Bode, S (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2021-02)
    To navigate the world safely, we often need to rapidly 'change our mind' about decisions. Current models assume that initial decisions and change-of-mind decisions draw upon common sources of sensory evidence. In two-choice scenarios, this evidence may be 'relative' or 'absolute'. For example, when judging which of two objects is the brightest, the luminance difference and luminance ratio between the two objects are sources of 'relative' evidence, which are invariant across additive and multiplicative luminance changes. Conversely, the overall luminance of the two objects combined is a source of 'absolute' evidence, which necessarily varies across symmetric luminance manipulations. Previous studies have shown that initial decisions are sensitive to both relative and absolute evidence; however, it is unknown whether change-of-mind decisions are sensitive to absolute evidence. Here, we investigated this question across two experiments. In each experiment participants indicated which of two flickering greyscale squares was brightest. Following an initial decision, the stimuli remained on screen for a brief period and participants could change their response. To investigate the effect of absolute evidence, the overall luminance of the two squares was varied whilst either the luminance difference (Experiment 1) or luminance ratio (Experiment 2) was held constant. In both experiments we found that increases in absolute evidence led to faster, less accurate initial responses and slower changes of mind. Change-of-mind accuracy decreased when the luminance difference was held constant, but remained unchanged when the luminance ratio was fixed. We show that the three existing change-of-mind models cannot account for our findings. We then fit three alternative models, previously used to account for the effect of absolute evidence on one-off decisions, to the data. A leaky competing accumulator model best accounted for the changes in behaviour across absolute evidence conditions - suggesting an important role for input-dependent leak in explaining perceptual changes of mind.
  • Item
    No Preview Available
    Tracking dynamic adjustments to decision making and performance monitoring processes in conflict tasks
    Feuerriegel, D ; Jiwa, M ; Turner, WF ; Andrejevic, M ; Hester, R ; Bode, S (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2021-09)
    How we exert control over our decision-making has been investigated using conflict tasks, which involve stimuli containing elements that are either congruent or incongruent. In these tasks, participants adapt their decision-making strategies following exposure to incongruent stimuli. According to conflict monitoring accounts, conflicting stimulus features are detected in medial frontal cortex, and the extent of experienced conflict scales with response time (RT) and frontal theta-band activity in the Electroencephalogram (EEG). However, the consequent adjustments to decision processes following response conflict are not well-specified. To characterise these adjustments and their neural implementation we recorded EEG during a modified Flanker task. We traced the time-courses of performance monitoring processes (frontal theta) and multiple processes related to perceptual decision-making. In each trial participants judged which of two overlaid gratings forming a plaid stimulus (termed the S1 target) was of higher contrast. The stimulus was divided into two sections, which each contained higher contrast gratings in either congruent or incongruent directions. Shortly after responding to the S1 target, an additional S2 target was presented, which was always congruent. Our EEG results suggest enhanced sensory evidence representations in visual cortex and reduced evidence accumulation rates for S2 targets following incongruent S1 stimuli. Results of a follow-up behavioural experiment indicated that the accumulation of sensory evidence from the incongruent (i.e. distracting) stimulus element was adjusted following response conflict. Frontal theta amplitudes positively correlated with RT following S1 targets (in line with conflict monitoring accounts). Following S2 targets there was no such correlation, and theta amplitude profiles instead resembled decision evidence accumulation trajectories. Our findings provide novel insights into how cognitive control is implemented following exposure to conflicting information, which is critical for extending conflict monitoring accounts.