Melbourne School of Psychological Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 29
  • Item
    Thumbnail Image
    Position representations of moving objects align with real-time position in the early visual response
    Johnson, PA ; Blom, T ; van Gaal, S ; Feuerriegel, D ; Bode, S ; Hogendoorn, H (eLIFE SCIENCES PUBL LTD, 2023-01-19)
    When interacting with the dynamic world, the brain receives outdated sensory information, due to the time required for neural transmission and processing. In motion perception, the brain may overcome these fundamental delays through predictively encoding the position of moving objects using information from their past trajectories. In the present study, we evaluated this proposition using multivariate analysis of high temporal resolution electroencephalographic data. We tracked neural position representations of moving objects at different stages of visual processing, relative to the real-time position of the object. During early stimulus-evoked activity, position representations of moving objects were activated substantially earlier than the equivalent activity evoked by unpredictable flashes, aligning the earliest representations of moving stimuli with their real-time positions. These findings indicate that the predictability of straight trajectories enables full compensation for the neural delays accumulated early in stimulus processing, but that delays still accumulate across later stages of cortical processing.
  • Item
    No Preview Available
    Decoding continuous variables from event-related potential (ERP) data with linear support vector regression using the Decision Decoding Toolbox (DDTBOX)
    Bode, S ; Schubert, E ; Hogendoorn, H ; Feuerriegel, D (FRONTIERS MEDIA SA, 2022-11-03)
    Multivariate classification analysis for event-related potential (ERP) data is a powerful tool for predicting cognitive variables. However, classification is often restricted to categorical variables and under-utilises continuous data, such as response times, response force, or subjective ratings. An alternative approach is support vector regression (SVR), which uses single-trial data to predict continuous variables of interest. In this tutorial-style paper, we demonstrate how SVR is implemented in the Decision Decoding Toolbox (DDTBOX). To illustrate in more detail how results depend on specific toolbox settings and data features, we report results from two simulation studies resembling real EEG data, and one real ERP-data set, in which we predicted continuous variables across a range of analysis parameters. Across all studies, we demonstrate that SVR is effective for analysis windows ranging from 2 to 100 ms, and relatively unaffected by temporal averaging. Prediction is still successful when only a small number of channels encode true information, and the analysis is robust to temporal jittering of the relevant information in the signal. Our results show that SVR as implemented in DDTBOX can reliably predict continuous, more nuanced variables, which may not be well-captured by classification analysis. In sum, we demonstrate that linear SVR is a powerful tool for the investigation of single-trial EEG data in relation to continuous variables, and we provide practical guidance for users.
  • Item
    Thumbnail Image
    Effects of iron supplementation on neural indices of habituation in Bangladeshi children
    Larson, LM ; Feuerriegel, D ; Hasan, MI ; Braat, S ; Jin, J ; Tipu, SMMU ; Shiraji, S ; Tofail, F ; Biggs, B-A ; Hamadani, JD ; Johnson, KA ; Bode, S ; Pasricha, S-R (ELSEVIER SCIENCE INC, 2023-01)
    BACKGROUND: Iron deficiency and anemia have been associated with poor cognition in children, yet the effects of iron supplementation on neurocognition remain unclear. OBJECTIVE: We aimed to examine the effects of supplementation with iron on neural indices of habituation using auditory event-related brain potentials (ERPs). METHODS: This substudy was nested within a 3-arm, double-blind, double-dummy, individual randomized trial in Bangladesh, in which 3300 8-mo-old children were randomly selected to receive 3 mo of daily iron syrup (12.5 mg iron), multiple micronutrient powders (MNPs) (including 12.5 mg iron), or placebo. Children were assessed after 3 mo of intervention (mo 3) and 9 mo thereafter (mo 12). The neurocognitive substudy comprised a randomly selected subset of children from the main trial. Brain activity elicited during an auditory roving oddball task was recorded using electroencephalography to provide an index of habituation. The differential response to a novel (deviant) compared with a repeated (standard) sound was examined. The primary outcome was the amplitude of the mismatch response (deviant minusstandard tone waveforms) at mo 3. Secondary outcomes included the deviant and standard tone-evoked amplitudes, N2 amplitude differences, and differences in mean amplitudes evoked by deviant tones presented in the second compared with first half of the oddball sequence at mo 3 and 12. RESULTS: Data were analyzed from 329 children at month 3 and 363 at mo 12. Analyses indicated no treatment effects of iron interventions compared with placebo on the amplitude of the mismatch response (iron syrup compared with placebo: mean difference (MD) = 0.07μV [95% CI: -1.22, 1.37]; MNPs compared with placebo: MD = 0.58μV [95% CI: -0.74, 1.90]) nor any secondary ERP outcomes at mo 3 or 12, despite improvements in hemoglobin and ferritin concentrations from iron syrup and MNPs in this nested substudy. CONCLUSION: In Bangladeshi children with >40% anemia prevalence, iron or MNP interventions alone are insufficient to improve neural indices of habituation. This trial was registered at the Australian New Zealand Clinical Trials Registry as ACTRN12617000660381.
  • Item
    Thumbnail Image
    Supplementation With Iron Syrup or Iron-Containing Multiple Micronutrient Powders Alters Resting Brain Activity in Bangladeshi Children
    Larson, LM ; Feuerriegel, D ; Hasan, MI ; Braat, S ; Jin, J ; Tipu, SMMU ; Shiraji, S ; Tofail, F ; Biggs, B-A ; Hamadani, J ; Johnson, K ; Pasricha, S-R ; Bode, S (ELSEVIER SCIENCE INC, 2023-01)
    BACKGROUND: Anemia and iron deficiency have been associated with poor child cognitive development. A key rationale for the prevention of anemia using supplementation with iron has been the benefits to neurodevelopment. However, little causal evidence exists for these gains. OBJECTIVES: We aimed to examine effects of supplementation with iron or multiple micronutrient powders (MNPs) on brain activity measures using resting electroencephalography (EEG). METHODS: Children included in this neurocognitive substudy were randomly selected from the Benefits and Risks of Iron Supplementation in Children study, a double-blind, double-dummy, individually randomized, parallel-group trial in Bangladesh, in which children, starting at 8 mo of age, received 3 mo of daily iron syrup, MNPs, or placebo. Resting brain activity was recorded using EEG immediately after intervention (month 3) and after a further 9-month follow-up (month 12). We derived EEG band power measures for delta, theta, alpha, and beta frequency bands. Linear regression models were used to compare the effect of each intervention with that of placebo on the outcomes. RESULTS: Data from 412 children at month 3 and 374 at month 12 were analyzed. At baseline, 43.9% were anemic and 26.7% were iron deficient. Immediately after intervention, iron syrup, but not MNPs, increased the mu alpha-band power, a measure that is associated with maturity and the production of motor actions (iron vs. placebo: mean difference = 0.30; 95% CI: 0.11, 0.50 μV2; P = 0.003; false discovery rate adjusted P = 0.015). Despite effects on hemoglobin and iron status, effects were not observed on the posterior alpha, beta, delta, and theta bands, nor were effects sustained at the 9-month follow-up. CONCLUSIONS: The effect size for immediate effects on the mu alpha-band power is comparable in magnitude with psychosocial stimulation interventions and poverty reduction strategies. However, overall, we did not find evidence for long-lasting changes in resting EEG power spectra from iron interventions in young Bangladeshi children. This trial was registered at www.anzctr.org.au as ACTRN12617000660381.
  • Item
    Thumbnail Image
    Visual mismatch responses index surprise signalling but not expectation suppression
    Feuerriegel, D ; Yook, J ; Quek, GL ; Hogendoorn, H ; Bode, S ( 2020-06-24)
    Abstract The ability to distinguish between commonplace and unusual sensory events is critical for efficient learning and adaptive behaviour. This has been investigated using oddball designs in which sequences of often-appearing (i.e. expected) stimuli are interspersed with rare (i.e. surprising) deviants. Resulting differences in electrophysiological responses following surprising compared to expected stimuli are known as visual mismatch responses (VMRs). VMRs are thought to index co-occurring contributions of stimulus repetition effects, expectation suppression (that occurs when one’s expectations are fulfilled), and expectation violation (i.e. surprise) responses; however, these different effects have been conflated in existing oddball designs. To better isolate and quantify effects of expectation suppression and surprise, we adapted an oddball design based on Fast Periodic Visual Stimulation (FPVS) that controls for stimulus repetition effects. We recorded electroencephalography (EEG) while participants (N=48) viewed stimulation sequences in which a single face identity was periodically presented at 6 Hz. Critically, one of two different face identities (termed oddballs) appeared as every 7th image throughout the sequence. The presentation probabilities of each oddball image within a sequence varied between 10-90%, such that participants could form expectations about which oddball face identity was more likely to appear within each sequence. We also included ‘expectation neutral’ 50% probability sequences, whereby consistently biased expectations would not be formed for either oddball face identity. We found that VMRs indexed surprise responses, and effects of expectation suppression were absent. That is, ERPs were more negative-going at occipitoparietal electrodes for surprising compared to neutral oddballs, but did not differ between expected and neutral oddballs. Surprising oddball-evoked ERPs were also highly similar across the 10-40% appearance probability conditions. Our findings indicate that VMRs which are not accounted for by repetition effects are best described as an all-or-none surprise response, rather than a minimisation of prediction error responses associated with expectation suppression. Highlights -We used a recently-developed oddball design that controls for repetition effects -We found effects of surprise but not expectation suppression on ERPs -Surprise responses did not vary by stimulus appearance probability
  • Item
    No Preview Available
    Perceptual decision confidence is sensitive to forgone physical effort expenditure
    Turner, W ; Angdias, R ; Feuerriegel, D ; Chong, T ; Hester, R ; Bode, S ( 2020-06-10)
    Contemporary theoretical accounts of metacognition propose that action-related information is used in the computation of perceptual decision confidence. We investigated whether the amount of expended physical effort, or the ‘motoric sunk cost’ of a decision, influences perceptual decision confidence judgements in humans. In particular, we examined whether people feel more confident in decisions which required more effort to report. Forty-two participants performed a luminance discrimination task that involved identifying which of two flickering grayscale squares was brightest. Participants reported their choice by squeezing hand-held dynamometers. Across trials, the effort required to report a decision was varied across three levels (low, medium, high). Critically, participants were only aware of the required effort level on each trial once they had initiated their motor response, meaning that the varying effort requirements could not influence their initial decisions. Following each decision, participants rated their confidence in their choice. We found that participants were more confident in decisions that required greater effort to report. This suggests that humans are sensitive to motoric sunk costs and supports contemporary models of metacognition in which actions inform the computation of decision confidence.
  • Item
    No Preview Available
    Neural correlates of metacognition across the adult lifespan
    Overhoff, H ; Ko, YH ; Feuerriegel, D ; Fink, G ; Stahl, J ; Weiss, P ; Bode, S ; Niessen, E ( 2021)
    Metacognitive accuracy describes the degree of overlap between the subjective perception of one’s decision accuracy (i.e., confidence) and objectively observed performance. With older age, the need for accurate metacognitive evaluation increases; however, error detection rates typically decrease. We investigated the effect of ageing on metacognitive accuracy using event-related potentials (ERPs) reflecting error detection and confidence: the error/correct negativity (N e/c ) and the error/correct positivity (P e/c ). Sixty-five healthy adults (20 to 76 years) completed a complex perceptual task and provided confidence ratings. We found that metacognitive accuracy declined with age beyond the expected decline in task performance, while the adaptive adjustment of behaviour was well preserved. P e/c amplitudes varied by confidence rating, but they did not mirror the reduction in metacognitive accuracy. N e/c amplitudes decreased with age except for high confidence correct responses. The results suggest that age-related difficulties in metacognitive evaluation could be related to an impaired integration of decision accuracy and confidence information processing. Ultimately, training the metacognitive evaluation of fundamental decisions in older adults might constitute a promising endeavour.
  • Item
    Thumbnail Image
    Response time modelling reveals evidence for multiple, distinct sources of moral decision caution
    Andrejević, M ; White, JP ; Feuerriegel, D ; Laham, S ; Bode, S ( 2021-01-28)
    People are often cautious in delivering moral judgments of others’ behaviours, as falsely accusing others of wrongdoing can be costly for social relationships. Caution might further be present when making judgements in information-dynamic environments, as contextual updates can change our minds. This study investigated the processes with which moral valence and context expectancy drive caution in moral judgements. Across two experiments, participants (N = 122) made moral judgements of others’ sharing actions. Prior to judging, participants were informed whether contextual information regarding the deservingness of the recipient would follow. We found that participants slowed their moral judgements when judging negatively valenced actions and when expecting contextual updates. Using a diffusion decision model framework, these changes were explained by shifts in drift rate and decision bias (valence) and boundary setting (context), respectively. These findings demonstrate how moral decision caution can be decomposed into distinct aspects of the unfolding decision process.
  • Item
    Thumbnail Image
    An initial ‘snapshot’ of sensory information biases the likelihood and speed of subsequent changes of mind
    Turner, W ; Feuerriegel, D ; Hester, R ; Bode, S ( 2020-11-27)
    Abstract: We often need to rapidly change our mind about perceptual decisions in order to account for new information and correct mistakes. One fundamental, unresolved question is whether information processed prior to a decision being made (‘pre-decisional information’) has any influence on the likelihood and speed with which that decision is reversed. We investigated this using a luminance discrimination task in which participants indicated which of two flickering greyscale squares was brightest. Following an initial decision, the stimuli briefly remained on screen, and participants could change their response. Using psychophysical reverse correlation, we examined how moment-to-moment fluctuations in stimulus luminance affected participants’ decisions. This revealed that the strength of even the very earliest (pre-decisional) evidence was associated with the likelihood and speed of later changes of mind. To account for this effect, we propose an extended diffusion model in which an initial ‘snapshot’ of sensory information biases ongoing evidence accumulation. Author Summary: To avoid harm in an ever-changing world we need to be able to rapidly change our minds about our decisions. For example, imagine being unable to overrule a decision to run across a street when you realise a speeding car is approaching. In this study, we examined the information processing dynamics which underlie perceptual judgements and changes of mind. By reverse correlating participants decisions with the moment-to-moment sensory evidence they received, we show that the very earliest information, processed prior to an initial decision being made, can have a lasting influence over the speed and likelihood of subsequent changes of mind. To account for this, we develop a model of perceptual decisions in which initial sensory evidence exerts a lasting bias over later evidence processing. When fit to participants’ behavioural responses alone, this model predicted their observed information usage patterns. This suggests that an initial ‘snapshot’ of sensory information may influence the ongoing dynamics of the perceptual decision process, thus influencing the speed and likelihood of decision reversals.
  • Item
    Thumbnail Image
    Decoding continuous variables from event-related potential (ERP) data with linear support vector regression (SVR) using the Decision Decoding Toolbox (DDTBOX)
    Bode, S ; Schubert, E ; Hogendoorn, H ; Feuerriegel, D ( 2021-06)
    Background: Multivariate classification analysis for event-related potential (ERP) data is a powerful tool for predicting cognitive variables. However, classification is often restricted to categorical variables and under-utilises continuous data, such as response times, response force, or subjective ratings. An alternative approach is Support Vector Regression (SVR), which uses single-trial data to predict continuous variables of interest. New Method: In this tutorial-style paper, we demonstrate how SVR is implemented in the Decision Decoding Toolbox (DDTBOX). To illustrate in more detail how results depend on specific toolbox settings and data features, we report results from two simulation studies resembling real EEG data, and one real ERP-data set, in which we predicted continuous variables across a range of analysis parameters. Results: Across all studies, we demonstrate that SVR is effective for analysis windows ranging from 2 ms – 100 ms, and relatively unaffected by temporal averaging. Prediction is still successful when only a small number of channels encode true information, and the analysis is robust to temporal jittering of the relevant information in the signal. Comparison with existing Methods: Our result show that SVR as implemented in DDTBOX can reliably predict continuous, more nuanced variables, which may not be well-captured by classification analysis. Conclusions In sum, we demonstrate that linear SVR is a powerful tool for the investigation of single-trial EEG data in relation to continuous variables, and we provide practical guidance for users.