Melbourne School of Psychological Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Fast Maximum Likelihood Estimation via Equilibrium Expectation for Large Network Data
    Byshkin, M ; Stivala, A ; Mira, A ; Robins, G ; Lomi, A (NATURE PORTFOLIO, 2018-07-31)
    A major line of contemporary research on complex networks is based on the development of statistical models that specify the local motifs associated with macro-structural properties observed in actual networks. This statistical approach becomes increasingly problematic as network size increases. In the context of current research on efficient estimation of models for large network data sets, we propose a fast algorithm for maximum likelihood estimation (MLE) that affords a significant increase in the size of networks amenable to direct empirical analysis. The algorithm we propose in this paper relies on properties of Markov chains at equilibrium, and for this reason it is called equilibrium expectation (EE). We demonstrate the performance of the EE algorithm in the context of exponential random graph models (ERGMs) a family of statistical models commonly used in empirical research based on network data observed at a single period in time. Thus far, the lack of efficient computational strategies has limited the empirical scope of ERGMs to relatively small networks with a few thousand nodes. The approach we propose allows a dramatic increase in the size of networks that may be analyzed using ERGMs. This is illustrated in an analysis of several biological networks and one social network with 104,103 nodes.
  • Item
    Thumbnail Image
    Exponential random graph model parameter estimation for very large directed networks
    Stivala, A ; Robins, G ; Lomi, A ; Mariño, IP (PUBLIC LIBRARY SCIENCE, 2020-01-24)
    Exponential random graph models (ERGMs) are widely used for modeling social networks observed at one point in time. However the computational difficulty of ERGM parameter estimation has limited the practical application of this class of models to relatively small networks, up to a few thousand nodes at most, with usually only a few hundred nodes or fewer. In the case of undirected networks, snowball sampling can be used to find ERGM parameter estimates of larger networks via network samples, and recently published improvements in ERGM network distribution sampling and ERGM estimation algorithms have allowed ERGM parameter estimates of undirected networks with over one hundred thousand nodes to be made. However the implementations of these algorithms to date have been limited in their scalability, and also restricted to undirected networks. Here we describe an implementation of the recently published Equilibrium Expectation (EE) algorithm for ERGM parameter estimation of large directed networks. We test it on some simulated networks, and demonstrate its application to an online social network with over 1.6 million nodes.