Melbourne School of Psychological Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Hepatitis C Transmission and Treatment in Contact Networks of People Who Inject Drugs
    Rolls, DA ; Sacks-Davis, R ; Jenkinson, R ; McBryde, E ; Pattison, P ; Robins, G ; Hellard, M ; Noymer, A (PUBLIC LIBRARY SCIENCE, 2013-11-01)
    Hepatitis C virus (HCV) chronically infects over 180 million people worldwide, with over 350,000 estimated deaths attributed yearly to HCV-related liver diseases. It disproportionally affects people who inject drugs (PWID). Currently there is no preventative vaccine and interventions feature long treatment durations with severe side-effects. Upcoming treatments will improve this situation, making possible large-scale treatment interventions. How these strategies should target HCV-infected PWID remains an important unanswered question. Previous models of HCV have lacked empirically grounded contact models of PWID. Here we report results on HCV transmission and treatment using simulated contact networks generated from an empirically grounded network model using recently developed statistical approaches in social network analysis. Our HCV transmission model is a detailed, stochastic, individual-based model including spontaneously clearing nodes. On transmission we investigate the role of number of contacts and injecting frequency on time to primary infection and the role of spontaneously clearing nodes on incidence rates. On treatment we investigate the effect of nine network-based treatment strategies on chronic prevalence and incidence rates of primary infection and re-infection. Both numbers of contacts and injecting frequency play key roles in reducing time to primary infection. The change from "less-" to "more-frequent" injector is roughly similar to having one additional network contact. Nodes that spontaneously clear their HCV infection have a local effect on infection risk and the total number of such nodes (but not their locations) has a network wide effect on the incidence of both primary and re-infection with HCV. Re-infection plays a large role in the effectiveness of treatment interventions. Strategies that choose PWID and treat all their contacts (analogous to ring vaccination) are most effective in reducing the incidence rates of re-infection and combined infection. A strategy targeting infected PWID with the most contacts (analogous to targeted vaccination) is the least effective.
  • Item
    Thumbnail Image
    Hepatitis C Virus Phylogenetic Clustering Is Associated with the Social-Injecting Network in a Cohort of People Who Inject Drugs
    Sacks-Davis, R ; Daraganova, G ; Aitken, C ; Higgs, P ; Tracy, L ; Bowden, S ; Jenkinson, R ; Rolls, D ; Pattison, P ; Robins, G ; Grebely, J ; Barry, A ; Hellard, M ; Blackard, J (PUBLIC LIBRARY SCIENCE, 2012-10-26)
    It is hypothesized that social networks facilitate transmission of the hepatitis C virus (HCV). We tested for association between HCV phylogeny and reported injecting relationships using longitudinal data from a social network design study. People who inject drugs were recruited from street drug markets in Melbourne, Australia. Interviews and blood tests took place three monthly (during 2005-2008), with participants asked to nominate up to five injecting partners at each interview. The HCV core region of individual isolates was then sequenced and phylogenetic trees were constructed. Genetic clusters were identified using bootstrapping (cut-off: 70%). An adjusted Jaccard similarity coefficient was used to measure the association between the reported injecting relationships and relationships defined by clustering in the phylogenetic analysis (statistical significance assessed using the quadratic assignment procedure). 402 participants consented to participate; 244 HCV infections were observed in 238 individuals. 26 genetic clusters were identified, with 2-7 infections per cluster. Newly acquired infection (AOR = 2.03, 95% CI: 1.04-3.96, p = 0.037, and HCV genotype 3 (vs. genotype 1, AOR = 2.72, 95% CI: 1.48-4.99) were independent predictors of being in a cluster. 54% of participants whose infections were part of a cluster in the phylogenetic analysis reported injecting with at least one other participant in that cluster during the study. Overall, 16% of participants who were infected at study entry and 40% of participants with newly acquired infections had molecular evidence of related infections with at least one injecting partner. Likely transmission clusters identified in phylogenetic analysis correlated with reported injecting relationships (adjusted Jaccard coefficient: 0.300; p<0.001). This is the first study to show that HCV phylogeny is associated with the injecting network, highlighting the importance of the injecting network in HCV transmission.
  • Item
    Thumbnail Image
    A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models
    Rolls, DA ; Wang, P ; McBryde, E ; Pattison, P ; Robins, G ; Moreno, Y (PUBLIC LIBRARY SCIENCE, 2015-11-10)
    We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a "hidden population". In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure.
  • Item
    Thumbnail Image
    Social encounter profiles of greater Melbourne residents, by location - a telephone survey
    Rolls, DA ; Geard, NL ; Warr, DJ ; Nathan, PM ; Robins, GL ; Pattison, PE ; McCaw, JM ; McVernon, J (BMC, 2015-11-02)
    BACKGROUND: Models of infectious disease increasingly seek to incorporate heterogeneity of social interactions to more accurately characterise disease spread. We measured attributes of social encounters in two areas of Greater Melbourne, using a telephone survey. METHODS: A market research company conducted computer assisted telephone interviews (CATIs) of residents of the Boroondara and Hume local government areas (LGAs), which differ markedly in ethnic composition, age distribution and household socioeconomic status. Survey items included household demographic and socio-economic characteristics, locations visited during the preceding day, and social encounters involving two-way conversation or physical contact. Descriptive summary measures were reported and compared using weight adjusted Wald tests of group means. RESULTS: The overall response rate was 37.6%, higher in Boroondara [n = 650, (46%)] than Hume [n = 657 (32%)]. Survey conduct through the CATI format was challenging, with implications for representativeness and data quality. Marked heterogeneity of encounter profiles was observed across age groups and locations. Household settings afforded greatest opportunity for prolonged close contact, particularly between women and children. Young and middle-aged men reported more age-assortative mixing, often with non-household members. Preliminary comparisons between LGAs suggested that mixing occurred in different settings. In addition, gender differences in mixing with household and non-household members, including strangers, were observed by area. CONCLUSIONS: Survey administration by CATI was challenging, but rich data were obtained, revealing marked heterogeneity of social behaviour. Marked dissimilarities in patterns of prolonged close mixing were demonstrated by gender. In addition, preliminary observations of between-area differences in socialisation warrant further evaluation.