Infectious Diseases - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    Combination Immune Checkpoint Blockade Enhances IL-2 and CD107a Production from HIV-Specific T Cells Ex Vivo in People Living with HIV on Antiretroviral Therapy
    Chiu, CY ; Chang, JJ ; Dantanarayana, A ; Solomon, A ; Evans, VA ; Pascoe, R ; Gubser, C ; Trautman, L ; Fromentin, R ; Chomont, N ; McMahon, JH ; Cameron, PU ; Rasmussen, TA ; Lewin, SR (AMER ASSOC IMMUNOLOGISTS, 2022-01-01)
    In people with HIV (PWH) on antiretroviral therapy (ART), immune dysfunction persists, including elevated expression of immune checkpoint (IC) proteins on total and HIV-specific T cells. Reversing immune exhaustion is one strategy to enhance the elimination of HIV-infected cells that persist in PWH on ART. We aimed to evaluate whether blocking CTL-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), T cell Ig domain and mucin domain 3 (TIM-3), T cell Ig and ITIM domain (TIGIT) and lymphocyte activation gene-3 (LAG-3) alone or in combination would enhance HIV-specific CD4+ and CD8+ T cell function ex vivo. Intracellular cytokine staining was performed using human PBMCs from PWH on ART (n = 11) and expression of CD107a, IFN-γ, TNF-α, and IL-2 was quantified with HIV peptides and Abs to IC. We found the following: 1) IC blockade enhanced the induction of CD107a and IL-2 but not IFN-γ and TNF-α in response to Gag and Nef peptides; 2) the induction of CD107a and IL-2 was greatest with multiple combinations of two Abs; and 3) Abs to LAG-3, CTLA-4, and TIGIT in combinations showed synergistic induction of IL-2 in HIV-specific CD8+ and CD107a and IL-2 production in HIV-specific CD4+ and CD8+ T cells. These results demonstrate that the combination of Abs to LAG-3, CTLA-4, or TIGIT can increase the frequency of cells expressing CD107a and IL-2 that associated with cytotoxicity and survival of HIV-specific CD4+ and CD8+ T cells in PWH on ART. These combinations should be further explored for an HIV cure.
  • Item
    Thumbnail Image
    Memory CD4+ T cells that co-express PD1 and CTLA4 have reduced response to activating stimuli facilitating HIV latency
    Rasmussen, TA ; Zerbato, JM ; Rhodes, A ; Tumpach, C ; Dantanarayana, A ; McMahon, JH ; Lau, JSY ; Chang, JJ ; Gubser, C ; Brown, W ; Hoh, R ; Krone, M ; Pascoe, R ; Chiu, CY ; Bramhall, M ; Lee, HJ ; Haque, A ; Fromentin, R ; Chomont, N ; Milush, J ; Van der Sluis, RM ; Palmer, S ; Deeks, SG ; Cameron, PU ; Evans, V ; Lewin, SR (CELL PRESS, 2022-10-18)
    Programmed cell death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) suppress CD4+ T cell activation and may promote latent HIV infection. By performing leukapheresis (n = 21) and lymph node biopsies (n = 8) in people with HIV on antiretroviral therapy (ART) and sorting memory CD4+ T cells into subsets based on PD1/CTLA4 expression, we investigate the role of PD1 and CTLA 4 in HIV persistence. We show that double-positive (PD1+CTLA4+) cells in blood contain more HIV DNA compared with double-negative (PD1-CTLA4-) cells but still have a lower proportion of cells producing multiply spliced HIV RNA after stimulation as well as reduced upregulation of T cell activation and proliferation markers. Transcriptomics analyses identify differential expression of key genes regulating T cell activation and proliferation with MAF, KLRB1, and TIGIT being upregulated in double-positive compared with double-negative cells, whereas FOS is downregulated. We conclude that, in addition to being enriched for HIV DNA, double-positive cells are characterized by negative signaling and a reduced capacity to respond to stimulation, favoring HIV latency.
  • Item
    Thumbnail Image
    Antiretroviral Initiation at ≥ 800 CD4+Cells/mm3 Associated With Lower Human Immunodeficiency Virus Reservoir Size
    Rasmussen, TA ; Ahuja, SK ; Kuwanda, L ; Vjecha, MJ ; Hudson, F ; Lal, L ; Rhodes, A ; Chang, J ; Palmer, S ; Auberson-Munderi, P ; Mugerwa, H ; Wood, R ; Badal-Faesen, S ; Pillay, S ; Mngqibisa, R ; LaRosa, A ; Hildago, J ; Petoumenos, K ; Chiu, C ; Lutaakome, J ; Kitonsa, J ; Kabaswaga, E ; Pala, P ; Ganoza, C ; Fisher, K ; Chang, C ; Lewin, SR ; Wright, EJ (OXFORD UNIV PRESS INC, 2022-11-14)
    BACKGROUND: Identifying factors that determine the frequency of latently infected CD4+ T cells on antiretroviral therapy (ART) may inform strategies for human immunodeficiency virus (HIV) cure. We investigated the role of CD4+ count at ART initiation for HIV persistence on ART. METHODS: Among participants of the Strategic Timing of Antiretroviral Treatment Study, we enrolled people with HIV (PWH) who initiated ART with CD4+ T-cell counts of 500-599, 600-799, or ≥ 800 cells/mm3. After 36-44 months on ART, the levels of total HIV-DNA, cell-associated unspliced HIV-RNA (CA-US HIV-RNA), and two-long terminal repeat HIV-DNA in CD4+ T cells were quantified and plasma HIV-RNA was measured by single-copy assay. We measured T-cell expression of Human Leucocyte Antigen-DR Isotype (HLA-DR), programmed death-1, and phosphorylated signal transducer and activator of transcription-5 (pSTAT5). Virological and immunological measures were compared across CD4+ strata. RESULTS: We enrolled 146 PWH, 36 in the 500-599, 60 in the 600-799, and 50 in the ≥ 800 CD4 strata. After 36-44 months of ART, total HIV-DNA, plasma HIV-RNA, and HLA-DR expression were significantly lower in PWH with CD4+ T-cell count ≥ 800 cells/mm3 at ART initiation compared with 600-799 or 500-599 cells/mm3. The median level of HIV-DNA after 36-44 months of ART was lower by 75% in participants initiating ART with ≥ 800 vs 500-599 cells/mm3 (median [interquartile range]: 16.3 [7.0-117.6] vs 68.4 [13.7-213.1] copies/million cells, respectively). Higher pSTAT5 expression significantly correlated with lower levels of HIV-DNA and CA-US HIV-RNA. Virological measures were significantly lower in females. CONCLUSIONS: Initiating ART with a CD4+ count ≥ 800 cells/mm3 compared with 600-799 or 500-599 cells/mm3 was associated with achieving a substantially smaller HIV reservoir on ART.