Infectious Diseases - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    Serological assays to measure dimeric IgA antibodies in SARS-CoV-2 infections
    Wei, Z ; Angrisano, F ; Eriksson, EM ; Mazhari, R ; Van, H ; Zheng, S ; Center, RJ ; McMahon, J ; Lau, J ; Kiernan-Walker, N ; Ruybal-Pesantez, S ; Mueller, I ; Robinson, LJ ; Anderson, DA ; Drummer, HE (WILEY, 2023-10)
    Current serological tests cannot differentiate between total immunoglobulin A (IgA) and dimeric IgA (dIgA) associated with mucosal immunity. Here, we describe two new assays, dIgA-ELISA and dIgA-multiplex bead assay (MBA), that utilize the preferential binding of dIgA to a chimeric form of secretory component, allowing the differentiation between dIgA and monomeric IgA. dIgA responses elicited through severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were measured in (i) a longitudinal panel, consisting of 74 samples (n = 20 individuals) from hospitalized cases of coronavirus disease 2019 (COVID-19); (ii) a longitudinal panel, consisting of 96 samples (n = 10 individuals) from individuals with mild COVID-19; (iii) a cross-sectional panel with PCR-confirmed SARS-CoV-2 infection with mild COVID-19 (n = 199) and (iv) pre-COVID-19 samples (n = 200). The dIgA-ELISA and dIgA-MBA demonstrated a specificity for dIgA of 99% and 98.5%, respectively. Analysis of dIgA responses in the longitudinal panels revealed that 70% (ELISA) and 50% (MBA) of patients elicited a dIgA response by day 20 after PCR diagnosis with a SARS-CoV-2 infection. Individuals with mild COVID-19 displayed increased levels of dIgA within the first 3 weeks after diagnosis but responses appeared to be short lived, compared with sustained IgA levels. However, in samples from hospitalized patients with COVID-19 we observed high and sustained levels of dIgA, up to 245 days after PCR diagnosis. Our results suggest that severe COVID-19 infections are associated with sustained levels of plasma dIgA compared with mild cases.
  • Item
    No Preview Available
    Correction: Does Malaria Affect Placental Development? Evidence from In Vitro Models
    Umbers, AJ ; Stanisic, DI ; Ome, M ; Wangnapi, R ; Hanieh, S ; Unger, HW ; Robinson, LJ ; Lufele, E ; Baiwog, F ; Siba, PM ; King, CL ; Beeson, JG ; Mueller, I ; Aplin, JD ; Glazier, JD ; Rogerson, SJ ; Hviid, L (Public Library of Science (PLoS), 2013)
  • Item
    Thumbnail Image
    Asia-Pacific ICEMR: Understanding Malaria Transmission to Accelerate Malaria Elimination in the Asia Pacific Region
    Mueller, I ; Vantaux, A ; Karl, S ; Laman, M ; Witkowski, B ; Pepey, A ; Vinit, R ; White, M ; Barry, A ; Beeson, JG ; Robinson, LJ (AMER SOC TROP MED & HYGIENE, 2022-10)
    Gaining an in-depth understanding of malaria transmission requires integrated, multifaceted research approaches. The Asia-Pacific International Center of Excellence in Malaria Research (ICEMR) is applying specifically developed molecular and immunological assays, in-depth entomological assessments, and advanced statistical and mathematical modeling approaches to a rich series of longitudinal cohort and cross-sectional studies in Papua New Guinea and Cambodia. This is revealing both the essential contribution of forest-based transmission and the particular challenges posed by Plasmodium vivax to malaria elimination in Cambodia. In Papua New Guinea, these studies document the complex host-vector-parasite interactions that are underlying both the stunning reductions in malaria burden from 2006 to 2014 and the significant resurgence in transmission in 2016 to 2018. Here we describe the novel analytical, surveillance, molecular, and immunological tools that are being applied in our ongoing Asia-Pacific ICEMR research program.
  • Item
    Thumbnail Image
    Assessment of IgG3 as a serological exposure marker for Plasmodium vivax in areas with moderate-high malaria transmission intensity
    Tayipto, Y ; Rosado, J ; Gamboa, D ; White, MTT ; Kiniboro, B ; Healer, J ; Opi, DH ; Beeson, JGG ; Takashima, E ; Tsuboi, T ; Harbers, M ; Robinson, L ; Mueller, I ; Longley, RJJ (FRONTIERS MEDIA SA, 2022-08-09)
    A more sensitive surveillance tool is needed to identify Plasmodium vivax infections for treatment and to accelerate malaria elimination efforts. To address this challenge, our laboratory has developed an eight-antigen panel that detects total IgG as serological markers of P. vivax exposure within the prior 9 months. The value of these markers has been established for use in areas with low transmission. In moderate-high transmission areas, there is evidence that total IgG is more long-lived than in areas with low transmission, resulting in poorer performance of these markers in these settings. Antibodies that are shorter-lived may be better markers of recent infection for use in moderate-high transmission areas. Using a multiplex assay, the antibody temporal kinetics of total IgG, IgG1, IgG3, and IgM against 29 P. vivax antigens were measured over 36 weeks following asymptomatic P. vivax infection in Papua New Guinean children (n = 31), from an area with moderate-high transmission intensity. IgG3 declined faster to background than total IgG, IgG1, and IgM. Based on these kinetics, IgG3 performance was then assessed for classifying recent exposure in a cohort of Peruvian individuals (n = 590; age 3-85 years) from an area of moderate transmission intensity. Using antibody responses against individual antigens, the highest performance of IgG3 in classifying recent P. vivax infections in the prior 9 months was to one of the Pv-fam-a proteins assessed (PVX_125728) (AUC = 0.764). Surprisingly, total IgG was overall a better marker of recent P. vivax infection, with the highest individual classification performance to RBP2b1986-2653 (PVX_094255) (AUC = 0.838). To understand the acquisition of IgG3 in this Peruvian cohort, relevant epidemiological factors were explored using a regression model. IgG3 levels were positively associated with increasing age, living in an area with (relatively) higher transmission intensity, and having three or more PCR-detected blood-stage P. vivax infections within the prior 13 months. Overall, we found that IgG3 did not have high accuracy for detecting recent exposure to P. vivax in the Peruvian cohort, with our data suggesting that this is due to the high levels of prior exposure required to acquire high IgG3 antibody levels.
  • Item
    Thumbnail Image
    SARS-CoV-2 Multi-Antigen Serology Assay
    Mazhari, R ; Ruybal-Pesantez, S ; Angrisano, F ; Kiernan-Walker, N ; Hyslop, S ; Longley, RJ ; Bourke, C ; Chen, C ; Williamson, DA ; Robinson, LJ ; Mueller, I ; Eriksson, EM (MDPI, 2021-12)
    Serology tests are extremely useful for assessing whether a person has been infected with a pathogen. Since the onset of the COVID-19 pandemic, measurement of anti-SARS-CoV-2-specific antibodies has been considered an essential tool in identifying seropositive individuals and thereby understanding the extent of transmission in communities. The Luminex system is a bead-based technology that has the capacity to assess multiple antigens simultaneously using very low sample volumes and is ideal for high-throughput studies. We have adapted this technology to develop a COVID-19 multi-antigen serological assay. This protocol described here carefully outlines recommended steps to optimize and establish this method for COVID-19-specific antibody measurement in plasma and in saliva. However, the protocol can easily be customized and thus the assay is broadly applicable to measure antibodies to other pathogens.
  • Item
    Thumbnail Image
    Patterns of protective associations differ for antibodies to &ITP&IT. &ITfalciparum&IT-infected erythrocytes and merozoites in immunity against malaria in children
    Chan, J-A ; Stanisic, D ; Duffy, MF ; Robinson, LJ ; Lin, E ; Kazura, JW ; King, CL ; Siba, PM ; Fowkes, FJ ; Mueller, I ; Beeson, JG (WILEY, 2017-12)
    Acquired antibodies play an important role in immunity to P. falciparum malaria and are typically directed towards surface antigens expressed by merozoites and infected erythrocytes (IEs). The importance of specific IE surface antigens as immune targets remains unclear. We evaluated antibodies and protective associations in two cohorts of children in Papua New Guinea. We used genetically-modified P. falciparum to evaluate the importance of PfEMP1 and a P. falciparum isolate with a virulent phenotype. Our findings suggested that PfEMP1 was the dominant target of antibodies to the IE surface, including functional antibodies that promoted opsonic phagocytosis by monocytes. Antibodies were associated with increasing age and concurrent parasitemia, and were higher among children exposed to a higher force-of-infection as determined using molecular detection. Antibodies to IE surface antigens were consistently associated with reduced risk of malaria in both younger and older children. However, protective associations for antibodies to merozoite surface antigens were only observed in older children. This suggests that antibodies to IE surface antigens, particularly PfEMP1, play an earlier role in acquired immunity to malaria, whereas greater exposure is required for protective antibodies to merozoite antigens. These findings have implications for vaccine design and serosurveillance of malaria transmission and immunity.
  • Item
    Thumbnail Image
    A Randomized Open-Label Evaluation of the Antimalarial Prophylactic Efficacy of Azithromycin-Piperaquine versus Sulfadoxine-Pyrimethamine in Pregnant Papua New Guinean Women
    Moore, BR ; Benjamin, JM ; Tobe, R ; Ome-Kaius, M ; Yadi, G ; Kasian, B ; Kong, C ; Robinson, LJ ; Laman, M ; Mueller, I ; Rogerson, S ; Davis, TME (American Society for Microbiology, 2019-10-01)
    Emerging malaria parasite sulfadoxine-pyrimethamine (SP) resistance has prompted assessment of alternatives for intermittent preventive treatment in pregnancy (IPTp). The objective was to evaluate the tolerability and prophylactic efficacy of azithromycin (AZ) plus piperaquine (PQ) in pregnant women in Papua New Guinea. The study was an open-label, randomized, parallel-group trial. A total of 122 women (median gestation, 26 weeks [range, 14 to 32 weeks]) were randomized 1:1 to three daily doses of 1 g AZ plus 960 mg PQ tetraphosphate or single-dose SP (4,500 mg sulfadoxine plus 225 mg pyrimethamine), based on computer-generated block randomization. Tolerability was assessed to day 7, and efficacy was assessed to day 42 (when participants were returned to usual care) and at delivery. Data for 119 participants (AZ-PQ, n = 61; SP, n = 58) were analyzed. Both regimens were well tolerated, but AZ-PQ was associated with more gastrointestinal side effects (31%) and dizziness (21%). Eight women (6.7%) were parasitemic at recruitment but all were aparasitemic by 72 h. There were no differences in blood smear positivity rates between AZ-PQ and SP up to day 42 (0% versus 5.2%; relative risk [RR], 0.14 [95% confidence interval [CI], 0.01 to 2.58] [P = 0.18]; absolute risk reduction [ARR], 5.2% [95% CI, -1.3 to 11.6%]) and at the time of delivery (0% versus 8.7%; RR, 0.11 [95% CI, 0.01 to 2.01] [P = 0.14]; ARR, 8.7% [95% CI, -0.2 to 17.6%]). Of 92 women who were monitored to parturition, 89 (97%) delivered healthy babies; there were 3 stillbirths (SP, n = 1; AZ-PQ, n = 2 [twins]). There was a higher live birth weight (mean ± standard deviation) in the AZ-PQ group (3.13 ± 0.42 versus 2.88 ± 0.55 kg [P = 0.016]; mean difference, 0.25 kg [95% CI, 0.02 to 0.48 kg]). AZ-PQ is a promising candidate for IPTp.
  • Item
    Thumbnail Image
    Model Free Approach to Kinetic Analysis of Real-Time Hyperpolarized 13C Magnetic Resonance Spectroscopy Data
    Hill, DK ; Orton, MR ; Mariotti, E ; Boult, JKR ; Panek, R ; Jafar, M ; Parkes, HG ; Jamin, Y ; Miniotis, MF ; Al-Saffar, NMS ; Beloueche-Babari, M ; Robinson, SP ; Leach, MO ; Chung, Y-L ; Eykyn, TR ; Snounou, G (PUBLIC LIBRARY SCIENCE, 2013-09-04)
    Naturally acquired humoral immunity to the malarial parasite Plasmodium falciparum can protect against disease, although the precise mechanisms remain unclear. Although antibody levels can be measured by ELISA, few studies have investigated functional antibody assays in relation to clinical outcomes. In this study we applied a recently developed functional assay of antibody-mediated opsonisation of merozoites, to plasma samples from a longitudinal cohort study conducted in a malaria endemic region of Papua New Guinea (PNG). Phagocytic activity was quantified by flow cytometry using a standardized and high-throughput protocol, and was subsequently evaluated for association with protection from clinical malaria and high-density parasitemia. Opsonising antibody responses were found to: i) increase with age, ii) be enhanced by concurrent infection, and iii) correlate with protection from clinical episodes and high-density parasitemia. Stronger protective associations were observed in individuals with no detectable parasitemia at baseline. This study presents the first evidence for merozoite phagocytosis as a correlate of acquired immunity and clinical protection against P. falciparum malaria.
  • Item
    Thumbnail Image
    Differential impact of malaria control interventions on P. falciparum and P. vivax infections in young Papua New Guinean children
    Ome-Kaius, M ; Kattenberg, JH ; Zaloumis, S ; Siba, M ; Kiniboro, B ; Jally, S ; Razook, Z ; Mantila, D ; Sui, D ; Ginny, J ; Rosanas-Urgell, A ; Karl, S ; Obadia, T ; Barry, A ; Rogerson, SJ ; Laman, M ; Tisch, D ; Felger, I ; Kazura, JW ; Mueller, I ; Robinson, LJ (BMC, 2019-12-09)
    INTRODUCTION: As malaria transmission declines, understanding the differential impact of intensified control on Plasmodium falciparum relative to Plasmodium vivax and identifying key drivers of ongoing transmission is essential to guide future interventions. METHODS: Three longitudinal child cohorts were conducted in Papua New Guinea before (2006/2007), during (2008) and after scale-up of control interventions (2013). In each cohort, children aged 1-5 years were actively monitored for infection and illness. Incidence of malaria episodes, molecular force of blood-stage infections (molFOB) and population-averaged prevalence of infections were compared across the cohorts to investigate the impact of intensified control in young children and the key risk factors for malaria infection and illness in 2013. RESULTS: Between 2006 and 2008, P. falciparum infection prevalence, molFOB, and clinical malaria episodes reduced by 47%, 59% and 69%, respectively, and a further 49%, 29% and 75% from 2008 to 2013 (prevalence 41.6% to 22.1% to 11.2%; molFOB: 3.4 to 1.4 to 1.0 clones/child/year; clinical episodes incidence rate (IR) 2.6 to 0.8 to IR 0.2 episodes/child/year). P. vivax clinical episodes declined at rates comparable to P. falciparum between 2006, 2008 and 2013 (IR 2.5 to 1.1 to 0.2), while P. vivax molFOB (2006, 9.8; 2008, 12.1) and prevalence (2006, 59.6%; 2008, 65.0%) remained high in 2008. However, in 2013, P. vivax molFOB (1.2) and prevalence (19.7%) had also substantially declined. In 2013, 89% of P. falciparum and 93% of P. vivax infections were asymptomatic, 62% and 47%, respectively, were sub-microscopic. Area of residence was the major determinant of malaria infection and illness. CONCLUSION: Intensified vector control and routine case management had a differential impact on rates of P. falciparum and P. vivax infections but not clinical malaria episodes in young children. This suggests comparable reductions in new mosquito-derived infections but a delayed impact on P. vivax relapsing infections due to a previously acquired reservoir of hypnozoites. This demonstrates the need to strengthen implementation of P. vivax radical cure to maximise impact of control in co-endemic areas. The high heterogeneity of malaria in 2013 highlights the importance of surveillance and targeted interventions to accelerate towards elimination.
  • Item
    Thumbnail Image
    Intermittent Preventive Treatment for Malaria in Papua New Guinean Infants Exposed to Plasmodium falciparum and P. vivax: A Randomized Controlled Trial
    Senn, N ; Rarau, P ; Stanisic, DI ; Robinson, L ; Barnadas, C ; Manong, D ; Salib, M ; Iga, J ; Tarongka, N ; Ley, S ; Rosanas-Urgell, A ; Aponte, JJ ; Zimmerman, PA ; Beeson, JG ; Schofield, L ; Siba, P ; Rogerson, SJ ; Reeder, JC ; Mueller, I ; Krishna, S (PUBLIC LIBRARY SCIENCE, 2012-03)
    BACKGROUND: Intermittent preventive treatment in infants (IPTi) has been shown in randomized trials to reduce malaria-related morbidity in African infants living in areas of high Plasmodium falciparum (Pf) transmission. It remains unclear whether IPTi is an appropriate prevention strategy in non-African settings or those co-endemic for P. vivax (Pv). METHODS AND FINDINGS: In this study, 1,121 Papua New Guinean infants were enrolled into a three-arm placebo-controlled randomized trial and assigned to sulfadoxine-pyrimethamine (SP) (25 mg/kg and 1.25 mg/kg) plus amodiaquine (AQ) (10 mg/kg, 3 d, n = 374), SP plus artesunate (AS) (4 mg/kg, 3 d, n = 374), or placebo (n = 373), given at 3, 6, 9 and 12 mo. Both participants and study teams were blinded to treatment allocation. The primary end point was protective efficacy (PE) against all episodes of clinical malaria from 3 to 15 mo of age. Analysis was by modified intention to treat. The PE (compared to placebo) against clinical malaria episodes (caused by all species) was 29% (95% CI, 10-43, p ≤ 0.001) in children receiving SP-AQ and 12% (95% CI, -11 to 30, p = 0.12) in those receiving SP-AS. Efficacy was higher against Pf than Pv. In the SP-AQ group, Pf incidence was 35% (95% CI, 9-54, p = 0.012) and Pv incidence was 23% (95% CI, 0-41, p = 0.048) lower than in the placebo group. IPTi with SP-AS protected only against Pf episodes (PE = 31%, 95% CI, 4-51, p = 0.027), not against Pv episodes (PE = 6%, 95% CI, -24 to 26, p = 0.759). Number of observed adverse events/serious adverse events did not differ between treatment arms (p > 0.55). None of the serious adverse events were thought to be treatment-related, and the vomiting rate was low in both treatment groups (1.4%-2.0%). No rebound in malaria morbidity was observed for 6 mo following the intervention. CONCLUSIONS: IPTi using a long half-life drug combination is efficacious for the prevention of malaria and anemia in infants living in a region highly endemic for both Pf and Pv.