Infectious Diseases - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 49
  • Item
    Thumbnail Image
    Interim results from a phase I randomized, placebo-controlled trial of novel SARS-CoV-2 beta variant receptor-binding domain recombinant protein and mRNA vaccines as a 4th dose booster
    Nolan, TM ; Deliyannis, G ; Griffith, M ; Braat, S ; Allen, LF ; Audsley, J ; Chung, AW ; Ciula, M ; Gherardin, NA ; Giles, ML ; Gordon, TP ; Grimley, SL ; Horng, L ; Jackson, DC ; Juno, JA ; Kedzierska, K ; Kent, SJ ; Lewin, SR ; Littlejohn, M ; McQuilten, HA ; Mordant, FL ; Nguyen, THO ; Soo, VP ; Price, B ; Purcell, DFJ ; Ramanathan, P ; Redmond, SJ ; Rockman, S ; Ruan, Z ; Sasadeusz, J ; Simpson, JA ; Subbarao, K ; Fabb, SA ; Payne, TJ ; Takanashi, A ; Tan, CW ; Torresi, J ; Wang, JJ ; Wang, L-F ; Al-Wassiti, H ; Wong, CY ; Zaloumis, S ; Pouton, CW ; Godfrey, DI (ELSEVIER, 2023-12)
    BACKGROUND: SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. METHODS: 76 healthy adults aged 18-64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59®, CSL Seqirus) protein vaccine (5, 15 or 45 μg, N = 32), mRNA vaccine (10, 20, or 50 μg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. CLINICALTRIALS: govNCT05272605. FINDINGS: No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. INTERPRETATION: There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. FUNDING: Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors.
  • Item
    No Preview Available
    Impact of a TLR9 agonist and broadly neutralizing antibodies on HIV-1 persistence: the randomized phase 2a TITAN trial
    Gunst, JD ; Hojen, JF ; Pahus, MH ; Rosas-Umbert, M ; Stiksrud, B ; McMahon, JH ; Denton, PW ; Nielsen, H ; Johansen, IS ; Benfield, T ; Leth, S ; Gerstoft, J ; Ostergaard, L ; Schleimann, MH ; Olesen, R ; Stovring, H ; Vibholm, L ; Weis, N ; Dyrhol-Riise, AM ; Pedersen, KBH ; Lau, JSY ; Copertino, DC ; Linden, N ; Huynh, TT ; Ramos, V ; Jones, RB ; Lewin, SR ; Tolstrup, M ; Rasmussen, TA ; Nussenzweig, MC ; Caskey, M ; Reikvam, DH ; Sogaard, OS (NATURE PORTFOLIO, 2023-10)
    Inducing antiretroviral therapy (ART)-free virological control is a critical step toward a human immunodeficiency virus type 1 (HIV-1) cure. In this phase 2a, placebo-controlled, double-blinded trial, 43 people (85% males) with HIV-1 on ART were randomized to (1) placebo/placebo, (2) lefitolimod (TLR9 agonist)/placebo, (3) placebo/broadly neutralizing anti-HIV-1 antibodies (bNAbs) or (4) lefitolimod/bNAb. ART interruption (ATI) started at week 3. Lefitolimod was administered once weekly for the first 8 weeks, and bNAbs were administered twice, 1 d before and 3 weeks after ATI. The primary endpoint was time to loss of virologic control after ATI. The median delay in time to loss of virologic control compared to the placebo/placebo group was 0.5 weeks (P = 0.49), 12.5 weeks (P = 0.003) and 9.5 weeks (P = 0.004) in the lefitolimod/placebo, placebo/bNAb and lefitolimod/bNAb groups, respectively. Among secondary endpoints, viral doubling time was slower for bNAb groups compared to non-bNAb groups, and the interventions were overall safe. We observed no added benefit of lefitolimod. Despite subtherapeutic plasma bNAb levels, 36% (4/11) in the placebo/bNAb group compared to 0% (0/10) in the placebo/placebo group maintained virologic control after the 25-week ATI. Although immunotherapy with lefitolimod did not lead to ART-free HIV-1 control, bNAbs may be important components in future HIV-1 curative strategies. ClinicalTrials.gov identifier: NCT03837756 .
  • Item
    No Preview Available
    Effect of high dose vitamin D3 on the HIV-1 reservoir: A pilot randomised controlled trial
    Pitman, MC ; Meagher, N ; Price, DJ ; Rhodes, A ; Chang, JJ ; Scher, B ; Allan, B ; Street, A ; McMahon, JH ; Rasmussen, TA ; Cameron, PU ; Hoy, JF ; Kent, SJ ; Lewin, SR (MEDISCRIPT LTD, 2023-09)
    INTRODUCTION: Antiretroviral therapy for people living with HIV-1 must be taken lifelong due to the persistence of latent virus in long-lived and proliferating CD4+ T cells. Vitamin D3 is a steroidal gene transcription regulator which exerts diverse effects on immune and epithelial cells including reductions in CD4+ T cell proliferation and improvement in gut barrier integrity. We hypothesised that a high dose of vitamin D3 would reduce the size of the HIV-1 reservoir by reducing CD4+ T cell proliferation. METHODS: We performed a randomised placebo-controlled trial evaluating the effect of 24 weeks of vitamin D3 (10,000 international units per day) on the HIV-1 reservoir and immunologic parameters in 30 adults on antiretroviral therapy; participants were followed for 12 weeks post-treatment. The primary endpoint was the effect on total HIV-1 DNA at week 24. Parameters were assessed using mixed-effects models. RESULTS: We found no effect of vitamin D3 on the change in total HIV-1 DNA from week 0 to week 24 relative to placebo. There were also no changes in integrated HIV-1 DNA, 2-long-terminal repeat (2-LTR) circles or cell-associated HIV-1 RNA. Vitamin D3 induced a significant increase in the proportion of central memory CD4+ and CD8+ T cells, a reduction in the proportion of senescent CD8+ T cells and a reduction in the natural killer cell frequency at all time points including week 36, 12 weeks after the study drug cessation. At week 36, there was a significant reduction in total HIV-1 DNA relative to placebo and persistently elevated 25-hydroxyvitamin D levels. No significant safety issues were identified. CONCLUSIONS: Vitamin D3 administration had a significant impact on the T cell differentiation but overall effects on the HIV-1 reservoir were limited and a reduction in HIV-1 DNA was only seen following cessation of the study drug. Additional studies are required to determine whether the dose and duration of vitamin D3 can be optimised to promote a continued depletion of the HIV-1 reservoir over time. TRIAL REGISTRATION: ClinicalTrials.gov NCT03426592.
  • Item
    No Preview Available
    Adaptation of the intact proviral DNA assay to a nanowell-based digital PCR platform
    Tumpach, C ; Cochrane, CR ; Kim, Y ; Ong, J ; Rhodes, A ; Angelovich, TA ; Churchill, MJ ; Lewin, SR ; Telwatte, S ; Roche, M (MEDISCRIPT LTD, 2023-06)
    Quantification of intact proviruses is a critical measurement in HIV cure studies both in vitro and in vivo. The widely adopted 'intact proviral DNA assay' (IPDA), designed to discriminate and quantify genetically intact HIV proviruses based on detection of two HIV sequence-specific targets, was originally validated using Bio-Rad's droplet digital PCR technology (ddPCR). Despite its advantages, ddPCR is limited in multiplexing capability (two-channel) and is both labor- and time intensive. To overcome some of these limitations, we utilized a nanowell-based digital PCR platform (dPCR, QIAcuity from Qiagen) which is a fully automated system that partitions samples into nanowells rather than droplets. In this study we adapted the IPDA assay to the QIAcuity platform and assessed its performance relative to ddPCR. The dPCR could differentiate between intact, 5' defective and 3' defective proviruses and was sensitive to single HIV copy input. We found the intra-assay and inter-assay variability was within acceptable ranges (with coefficient of variation at or below 10%). When comparing the performance of the IPDA in ex vivo CD4+ T cells from people with HIV on antiretroviral therapy, there was a strong correlation in the quantification of intact (rs = 0.93; p < 0.001) and 3' defective proviruses (rs = 0.96; p < 0.001) with a significant but less strong correlation for 5' defective proviruses (rs = 0.7; p = 0.04). We demonstrate that the dPCR platform enables sensitive and accurate quantification of genetically intact and defective proviruses similar to the ddPCR system but with greater speed and efficiency. This flexible system can be further optimized in the future, to detect up to 5 targets, enabling a more precise detection of intact and potentially replication-competent proviruses.
  • Item
    No Preview Available
    Regional Analysis of Intact and Defective HIV Proviruses in the Brain of Viremic and Virally Suppressed People with HIV
    Angelovich, TA ; Cochrane, CR ; Zhou, J ; Tumpach, C ; Byrnes, SJ ; Eddine, JJ ; Waring, E ; Busman-Sahay, K ; Deleage, C ; Jenkins, TA ; Hearps, AC ; Turville, S ; Gorry, PR ; Lewin, SR ; Brew, BJ ; Estes, JD ; Roche, M ; Churchill, MJ (WILEY, 2023-10)
    Here, we provide the first regional analysis of intact and defective HIV reservoirs within the brain. Brain tissue from both viremic and virally suppressed people with HIV (PWH) harbored HIV pol DNA in all regions tested, with lower levels present in basal ganglia and cerebellum relative to frontal white matter. Intact proviruses were primarily found in the frontal white matter but also detected in other brain regions of PWH, demonstrating frontal white matter as a major brain reservoir of intact, potentially replication competent HIV DNA that persists despite antiretroviral therapy. ANN NEUROL 2023;94:798-802.
  • Item
    Thumbnail Image
    Shock and kill within the CNS: A promising HIV eradication approach?
    Nühn, MM ; Gumbs, SBH ; Buchholtz, NVEJ ; Jannink, LM ; Gharu, L ; de Witte, LD ; Wensing, AMJ ; Lewin, SR ; Nijhuis, M ; Symons, J (Oxford University Press (OUP), 2022-11)
    The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.
  • Item
    Thumbnail Image
    The role of latency reversal in HIV cure strategies
    Tanaka, K ; Kim, Y ; Roche, M ; Lewin, SR (WILEY, 2022-10)
    One strategy to eliminate latently infected cells that persist in people with HIV on antiretroviral therapy is to activate virus transcription and virus production to induce virus or immune-mediated cell death. This is called latency reversal. Despite clear activity of multiple latency reversal agents in vitro, clinical trials of latency-reversing agents have not shown significant reduction in latently infected cells. We review new insights into the biology of HIV latency and discuss novel approaches to enhance the efficacy of latency reversal agents.
  • Item
    Thumbnail Image
    IL7RA single nucleotide polymorphisms are associated with the size and function of the MAIT cell population in treated HIV-1 infection
    Han, F ; Gulam, MY ; Zheng, Y ; Zulhaimi, NS ; Sia, WR ; He, D ; Ho, A ; Hadadi, L ; Liu, Z ; Qin, P ; Lobie, PE ; Kamarulzaman, A ; Wang, L-F ; Sandberg, JK ; Lewin, SR ; Rajasuriar, R ; Leeansyah, E (FRONTIERS MEDIA SA, 2022-10-20)
    MAIT cells are persistently depleted and functionally exhausted in HIV-1-infected patients despite long-term combination antiretroviral therapy (cART). IL-7 treatment supports MAIT cell reconstitution in vivo HIV-1-infected individuals and rescues their functionality in vitro. Single-nucleotide polymorphisms (SNPs) of the IL-7RA gene modulate the levels of soluble(s)IL-7Rα (sCD127) levels and influence bioavailability of circulating IL-7. Here we evaluate the potential influence of IL-7RA polymorphisms on MAIT cell numbers and function in healthy control (HC) subjects and HIV-1-infected individuals on long-term cART. Our findings indicate that IL-7RA haplotype 2 (H2*T), defined as T-allele carriers at the tagging SNP rs6897932, affects the size of the peripheral blood MAIT cell pool, as well as their production of cytokines and cytolytic effector proteins in response to bacterial stimulation. H2*T carriers had lower sIL-7Rα levels and higher MAIT cell frequency with enhanced functionality linked to higher expression of MAIT cell-associated transcription factors. Despite an average of 7 years on suppressive cART, MAIT cell levels and function in HIV-1-infected individuals were still significantly lower than those of HC. Notably, we observed a significant correlation between MAIT cell levels and cART duration only in HIV-1-infected individuals carrying IL-7RA haplotype 2. Interestingly, treatment with sIL-7Rα in vitro suppressed IL-7-dependent MAIT cell proliferation and function following cognate stimulations. These observations suggest that sIL-7Rα levels may influence MAIT cell numbers and function in vivo by limiting IL-7 bioavailability to MAIT cells. Collectively, these observations suggest that IL-7RA polymorphisms may play a significant role in MAIT cell biology and influence MAIT cells recovery in HIV-1 infection. The potential links between IL7RA polymorphisms, MAIT cell immunobiology, and HIV-1 infection warrant further studies going forward.
  • Item
    Thumbnail Image
    Lessons for the HIV response from structural innovations catalysed by COVID-19.
    Isbell, M ; Bekker, L-G ; Grinsztejn, B ; Kates, J ; Kamarulzaman, A ; Lewin, SR ; Ngure, K ; Phanuphak, N ; Pozniak, A ; Grimsrud, A (BMJ, 2022-11)
  • Item
    No Preview Available
    Combination Immune Checkpoint Blockade Enhances IL-2 and CD107a Production from HIV-Specific T Cells Ex Vivo in People Living with HIV on Antiretroviral Therapy
    Chiu, CY ; Chang, JJ ; Dantanarayana, A ; Solomon, A ; Evans, VA ; Pascoe, R ; Gubser, C ; Trautman, L ; Fromentin, R ; Chomont, N ; McMahon, JH ; Cameron, PU ; Rasmussen, TA ; Lewin, SR (AMER ASSOC IMMUNOLOGISTS, 2022-01-01)
    In people with HIV (PWH) on antiretroviral therapy (ART), immune dysfunction persists, including elevated expression of immune checkpoint (IC) proteins on total and HIV-specific T cells. Reversing immune exhaustion is one strategy to enhance the elimination of HIV-infected cells that persist in PWH on ART. We aimed to evaluate whether blocking CTL-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), T cell Ig domain and mucin domain 3 (TIM-3), T cell Ig and ITIM domain (TIGIT) and lymphocyte activation gene-3 (LAG-3) alone or in combination would enhance HIV-specific CD4+ and CD8+ T cell function ex vivo. Intracellular cytokine staining was performed using human PBMCs from PWH on ART (n = 11) and expression of CD107a, IFN-γ, TNF-α, and IL-2 was quantified with HIV peptides and Abs to IC. We found the following: 1) IC blockade enhanced the induction of CD107a and IL-2 but not IFN-γ and TNF-α in response to Gag and Nef peptides; 2) the induction of CD107a and IL-2 was greatest with multiple combinations of two Abs; and 3) Abs to LAG-3, CTLA-4, and TIGIT in combinations showed synergistic induction of IL-2 in HIV-specific CD8+ and CD107a and IL-2 production in HIV-specific CD4+ and CD8+ T cells. These results demonstrate that the combination of Abs to LAG-3, CTLA-4, or TIGIT can increase the frequency of cells expressing CD107a and IL-2 that associated with cytotoxicity and survival of HIV-specific CD4+ and CD8+ T cells in PWH on ART. These combinations should be further explored for an HIV cure.