Infectious Diseases - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    Antibody to Plasmodium falciparum Variant Surface Antigens, var Gene Transcription, and ABO Blood Group in Children With Severe or Uncomplicated Malaria
    Barua, P ; Duffy, MF ; Manning, L ; Laman, M ; Davis, TME ; Mueller, I ; Haghiri, A ; Simpson, JA ; Beeson, JG ; Rogerson, SJ (OXFORD UNIV PRESS INC, 2023-10-18)
    BACKGROUND: Antibodies to variant surface antigens (VSAs) such as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) may vary with malaria severity. The influence of ABO blood group on antibody development is not understood. METHODS: Immunoglobulin G antibodies to VSAs in Papua New Guinean children with severe (n = 41) or uncomplicated (n = 30) malaria were measured by flow cytometry using homologous P falciparum isolates. Isolates were incubated with ABO-matched homologous and heterologous acute and convalescent plasma. RNA was used to assess var gene transcription. RESULTS: Antibodies to homologous, but not heterologous, isolates were boosted in convalescence. The relationship between antibody and severity varied by blood group. Antibodies to VSAs were similar in severe and uncomplicated malaria at presentation, higher in severe than uncomplicated malaria in convalescence, and higher in children with blood group O than other children. Six var gene transcripts best distinguished severe from uncomplicated malaria, including UpsA and 2 CIDRα1 domains. CONCLUSIONS: ABO blood group may influence antibody acquisition to VSAs and susceptibility to severe malaria. Children in Papua New Guinea showed little evidence of acquisition of cross-reactive antibodies following malaria. Var gene transcripts in Papua New Guinean children with severe malaria were similar to those reported from Africa.
  • Item
    No Preview Available
    Correction: Does Malaria Affect Placental Development? Evidence from In Vitro Models
    Umbers, AJ ; Stanisic, DI ; Ome, M ; Wangnapi, R ; Hanieh, S ; Unger, HW ; Robinson, LJ ; Lufele, E ; Baiwog, F ; Siba, PM ; King, CL ; Beeson, JG ; Mueller, I ; Aplin, JD ; Glazier, JD ; Rogerson, SJ ; Hviid, L (Public Library of Science (PLoS), 2013)
  • Item
    Thumbnail Image
    Induction, decay, and determinants of functional antibodies following vaccination with the RTS,S malaria vaccine in young children
    Feng, G ; Kurtovic, L ; Agius, PA ; Aitken, EH ; Sacarlal, J ; Wines, BD ; Hogarth, PM ; Rogerson, SJ ; Fowkes, FJ ; Dobano, C ; Beeson, JG (BMC, 2022-08-25)
    BACKGROUND: RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. Antibodies play the major role in vaccine-induced immunity, but knowledge on the induction, decay, and determinants of antibody function is limited, especially among children. Antibodies that promote opsonic phagocytosis and other cellular functions appear to be important contributors to RTS,S immunity. METHODS: We studied a phase IIb trial of RTS,S/AS02 conducted in young children in malaria-endemic regions of Mozambique. We evaluated the induction of antibodies targeting the circumsporozoite protein (CSP, vaccine antigen) that interact with Fcγ-receptors (FcRγs) and promote phagocytosis (neutrophils, monocytes, THP-1 cells), antibody-dependent respiratory burst (ADRB) by neutrophils, and natural killer (NK) cell activity, as well as the temporal kinetics of responses over 5 years of follow-up (ClinicalTrials.gov registry number NCT00197041). RESULTS: RTS,S vaccination induced CSP-specific IgG with FcγRIIa and FcγRIII binding activity and promoted phagocytosis by neutrophils, THP-1 monocytes, and primary human monocytes, neutrophil ADRB activity, and NK cell activation. Responses were highly heterogenous among children, and the magnitude of neutrophil phagocytosis by antibodies was relatively modest, which may reflect modest vaccine efficacy. Induction of functional antibodies was lower among children with higher malaria exposure. Functional antibody magnitude and the functional activity of antibodies largely declined within a year post-vaccination, and decay were highest in the first 6 months, consistent with the decline in vaccine efficacy over that time. Decay rates varied for different antibody parameters and decay was slower for neutrophil phagocytosis. Biostatistical modelling suggested IgG1 and IgG3 contribute in promoting FcγR binding and phagocytosis, and IgG targeting the NANP-repeat and C-terminal regions CSP were similarly important for functional activities. CONCLUSIONS: Results provide new insights to understand the modest and time-limited efficacy of RTS,S in children and the induction of antibody functional activities. Improving the induction and maintenance of antibodies that promote phagocytosis and cellular functions, and combating the negative effect of malaria exposure on vaccine responses are potential strategies for improving RTS,S efficacy and longevity.
  • Item
    Thumbnail Image
    Acquisition of Antibodies Against Endothelial Protein C Receptor-Binding Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1 in Children with Severe Malaria
    Rambhatla, JS ; Turner, L ; Manning, L ; Laman, M ; Davis, TME ; Beeson, JG ; Mueller, I ; Warrel, J ; Theander, TG ; Lavstsen, T ; Rogerson, SJ (OXFORD UNIV PRESS INC, 2019-03-01)
    BACKGROUND: Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration in postcapillary venules in P. falciparum malaria. PfEMP1 types can be classified based on their cysteine-rich interdomain region (CIDR) domains. Antibodies to different PfEMP1 types develop gradually after repeated infections as children age, and antibodies to specific CIDR types may confer protection. METHODS: Levels of immunoglobulin G to 35 recombinant CIDR domains were measured by means of Luminex assay in acute-stage (baseline) and convalescent-stage plasma samples from Papua New Guinean children with severe or uncomplicated malaria and in healthy age-matched community controls. RESULTS: At baseline, antibody levels were similar across the 3 groups. After infection, children with severe malaria had higher antibody levels than those with uncomplicated malaria against the endothelial protein C receptor (EPCR) binding CIDRα1 domains, and this difference was largely confined to older children. Antibodies to EPCR-binding domains increased from presentation to follow-up in severe malaria, but not in uncomplicated malaria. CONCLUSIONS: The acquisition of antibodies against EPCR-binding CIDRα1 domains of PfEMP1 after a severe malaria episode suggest that EPCR-binding PfEMP1 may have a role in the pathogenesis of severe malaria in Papua New Guinea.
  • Item
    Thumbnail Image
    Antibody Targets on the Surface of Plasmodium falciparum-Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children
    Chan, J-A ; Boyle, MJ ; Moore, KA ; Reiling, L ; Lin, Z ; Hasang, W ; Avril, M ; Manning, L ; Mueller, I ; Laman, M ; Davis, T ; Smith, JD ; Rogerson, SJ ; Simpson, JA ; Fowkes, FJI ; Beeson, JG (Oxford University Press, 2019-03-01)
    BACKGROUND: Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature contributes to pathogenesis of severe malaria in children. This mechanism is mediated by antigens expressed on the IE surface. However, knowledge of specific targets and functions of antibodies to IE surface antigens that protect against severe malaria is limited. METHODS: Antibodies to IE surface antigens were examined in a case-control study of young children in Papua New Guinea presenting with severe or uncomplicated malaria (n = 448), using isolates with a virulent phenotype associated with severe malaria, and functional opsonic phagocytosis assays. We used genetically modified isolates and recombinant P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains to quantify PfEMP1 as a target of antibodies associated with disease severity. RESULTS: Antibodies to the IE surface and recombinant PfEMP1 domains were significantly higher in uncomplicated vs severe malaria and were boosted following infection. The use of genetically modified P. falciparum revealed that PfEMP1 was a major target of antibodies and that PfEMP1-specific antibodies were associated with reduced odds of severe malaria. Furthermore, antibodies promoting the opsonic phagocytosis of IEs by monocytes were lower in those with severe malaria. CONCLUSIONS: Findings suggest that PfEMP1 is a dominant target of antibodies associated with reduced risk of severe malaria, and function in part by promoting opsonic phagocytosis.
  • Item
    Thumbnail Image
    Identifying and combating the impacts of COVID-19 on malaria
    Rogerson, SJ ; Beeson, JG ; Laman, M ; Poespoprodjo, JR ; William, T ; Simpson, JA ; Price, RN (BMC, 2020-07-30)
    BACKGROUND: The COVID-19 pandemic has resulted in millions of infections, hundreds of thousands of deaths and major societal disruption due to lockdowns and other restrictions introduced to limit disease spread. Relatively little attention has been paid to understanding how the pandemic has affected treatment, prevention and control of malaria, which is a major cause of death and disease and predominantly affects people in less well-resourced settings. MAIN BODY: Recent successes in malaria control and elimination have reduced the global malaria burden, but these gains are fragile and progress has stalled in the past 5 years. Withdrawing successful interventions often results in rapid malaria resurgence, primarily threatening vulnerable young children and pregnant women. Malaria programmes are being affected in many ways by COVID-19. For prevention of malaria, insecticide-treated nets need regular renewal, but distribution campaigns have been delayed or cancelled. For detection and treatment of malaria, individuals may stop attending health facilities, out of fear of exposure to COVID-19, or because they cannot afford transport, and health care workers require additional resources to protect themselves from COVID-19. Supplies of diagnostics and drugs are being interrupted, which is compounded by production of substandard and falsified medicines and diagnostics. These disruptions are predicted to double the number of young African children dying of malaria in the coming year and may impact efforts to control the spread of drug resistance. Using examples from successful malaria control and elimination campaigns, we propose strategies to re-establish malaria control activities and maintain elimination efforts in the context of the COVID-19 pandemic, which is likely to be a long-term challenge. All sectors of society, including governments, donors, private sector and civil society organisations, have crucial roles to play to prevent malaria resurgence. Sparse resources must be allocated efficiently to ensure integrated health care systems that can sustain control activities against COVID-19 as well as malaria and other priority infectious diseases. CONCLUSION: As we deal with the COVID-19 pandemic, it is crucial that other major killers such as malaria are not ignored. History tells us that if we do, the consequences will be dire, particularly in vulnerable populations.
  • Item
    Thumbnail Image
    Sulphadoxine-pyrimethamine plus azithromycin may improve birth outcomes through impacts on inflammation and placental angiogenesis independent of malarial infection
    Unger, HW ; Hansa, AP ; Buffet, C ; Hasang, W ; Teo, A ; Randall, L ; Ome-Kaius, M ; Karl, S ; Anuan, AA ; Beeson, JG ; Mueller, I ; Stock, SJ ; Rogerson, SJ (NATURE PUBLISHING GROUP, 2019-02-19)
    Intermittent preventive treatment with sulphadoxine-pyrimethamine (SP) and SP plus azithromycin (SPAZ) reduces low birthweight (<2,500 g) in women without malarial and reproductive tract infections. This study investigates the impact of SPAZ on associations between plasma biomarkers of inflammation and angiogenesis and adverse pregnancy outcomes in 2,012 Papua New Guinean women. Concentrations of C-reactive protein (CRP), α-1-acid glycoprotein (AGP), soluble endoglin (sEng), soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) were measured at enrolment and delivery in a trial comparing SPAZ to SP plus chloroquine (SPCQ). At antenatal enrolment higher CRP (adjusted odds ratio 1.52; 95% confidence interval [CI] 1.03-2.25), sEng (4.35; 1.77, 10.7) and sFlt1 (2.21; 1.09, 4.48) were associated with preterm birth, and higher sEng with low birthweight (1.39; 1.11,3.37), in SPCQ recipients only. Increased enrolment sFlt1:PlGF ratios associated with LBW in all women (1.46; 1.11, 1.90). At delivery, higher AGP levels were strongly associated with low birthweight, preterm birth and small-for-gestational age babies in the SPCQ arm only. Restricting analyses to women without malaria infection did not materially alter these relationships. Women receiving SPAZ had lower delivery AGP and CRP levels (p < 0.001). SPAZ may protect against adverse pregnancy outcomes by reducing inflammation and preventing its deleterious consequences, including dysregulation of placental angiogenesis, in women with and without malarial infection.
  • Item
    Thumbnail Image
    Characterization of VAR2CSA-deficient Plasmodium falciparum-infected erythrocytes selected for adhesion to the BeWo placental cell line
    Yosaatmadja, F ; Andrews, KT ; Duffy, MF ; Brown, GV ; Beeson, JG ; Rogerson, SJ (BMC, 2008-03-26)
    BACKGROUND: Malaria in pregnancy is characterized by accumulation of infected erythrocytes (IE) in the placenta. The key ligand identified as mediating this process is a Plasmodium falciparum erythrocyte membrane protein 1 family member, termed VAR2CSA. VAR2CSA appears to be the main ligand responsible for adhesion to chondroitin sulphate A (CSA). Whether other PfEMP1 molecules can also mediate placental adhesion, independent of CSA binding, is unclear. METHODS: The parasite line CS2 carrying a disrupted var2csa gene (CS2KO) was selected for adhesion to the BeWo choriocarcinoma cell line, which has been proposed as a model for placental malaria. The selected and control IE were tested for adhesion to placental sections and flow cytometry was used to measure recognition of IE by three serum sets from malaria-exposed men and women. RESULTS: Wild-type CS2 adhere to BeWo and placental tissue via CSA. CS2KO IE were successfully selected for adhesion to BeWo, and adhered by a CSA-independent mechanism. They bound to immobilized ICAM-1 and CD36. BeWo-selected CS2KO bound at moderate levels to placental sections, but most binding was to placental villi rather than to the syncytiotrophoblast to which IE adherence occurs in vivo. This binding was inhibited by a blocking antibody to CD36 but not to ICAM-1. As expected, sera from malaria-exposed adults recognized CS2 IE in a gender and parity dependent manner. In one serum set, there was a similar but less pronounced pattern of antibody binding to selected CS2KO IE, but this was not seen in two others. One var gene, It4var19, was particularly abundant in the selected line and was detected as full length transcripts in BeWo-selected IE, but not unselected CS2KO. CONCLUSION: This study suggests that IE with characteristics similar to the CS2KO have a limited role in the pathogenesis of placental malaria. VAR2CSA appear to be the major ligand for placental adhesion, and could be the basis for a vaccine against pregnancy malaria.
  • Item
    Thumbnail Image
    Using an Improved Phagocytosis Assay to Evaluate the Effect of HIV on Specific Antibodies to Pregnancy-Associated Malaria
    Ataide, R ; Hasang, W ; Wilson, DW ; Beeson, JG ; Mwapasa, V ; Molyneux, ME ; Meshnick, SR ; Rogerson, SJ ; Snounou, G (PUBLIC LIBRARY SCIENCE, 2010-05-25)
    BACKGROUND: Pregnant women residing in malaria endemic areas are highly susceptible to Plasmodium falciparum malaria, particularly during their first pregnancy, resulting in low birth weight babies and maternal anaemia. This susceptibility is associated with placental sequestration of parasitised red blood cells expressing pregnancy-specific variant surface antigens. Acquisition of antibodies against these variant surface antigens may protect women and their offspring. Functions of such antibodies may include prevention of placental sequestration or opsonisation of parasitised cells for phagocytic clearance. METHODOLOGY/FINDINGS: Here we report the development and optimisation of a new high-throughput flow cytometry-based phagocytosis assay using undifferentiated Thp-1 cells to quantitate the amount of opsonizing antibody in patient sera, and apply this assay to measure the impact of HIV on the levels of antibodies to a pregnancy malaria-associated parasite line in a cohort of Malawian primigravid women. The assay showed high reproducibility, with inter-experimental correlation of r(2) = 0.99. In primigravid women, concurrent malaria infection was associated with significantly increased antibodies, whereas HIV decreased the ability to acquire opsonising antibodies (Mann-Whitney ranksum: p = 0.013). This decrease was correlated with HIV-induced immunosuppression, with women with less than 350 x 10(6) CD4+ T- cells/L having less opsonising antibodies (coef: -11.95,P = 0.002). Levels of antibodies were not associated with protection from low birth weight or anaemia. CONCLUSIONS/SIGNIFICANCE: This flow cytometry-based phagocytosis assay proved to be efficient and accurate for the measurement of Fc-receptor mediated phagocytosis-inducing antibodies in large cohorts. HIV was found to affect mainly the acquisition of antibodies to pregnancy-specific malaria in primigravidae. Further studies of the relationship between opsonising antibodies to malaria in pregnancy and HIV are indicated.
  • Item
    Thumbnail Image
    Intermittent Preventive Treatment to Reduce the Burden of Malaria in Children: New Evidence on Integration and Delivery
    Beeson, JG ; Rogerson, SJ ; Mueller, I ; Richards, JS ; Fowkes, FJI (PUBLIC LIBRARY SCIENCE, 2011-02)
    James Beeson and colleagues discuss three new studies in PLoS Medicine that provide valuable evidence on how to delivery and integrate intermittent preventive reatment for malaria in children (IPTc).