Infectious Diseases - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 63
  • Item
    No Preview Available
    Antibody to Plasmodium falciparum Variant Surface Antigens, var Gene Transcription, and ABO Blood Group in Children With Severe or Uncomplicated Malaria
    Barua, P ; Duffy, MF ; Manning, L ; Laman, M ; Davis, TME ; Mueller, I ; Haghiri, A ; Simpson, JA ; Beeson, JG ; Rogerson, SJ (OXFORD UNIV PRESS INC, 2023-10-18)
    BACKGROUND: Antibodies to variant surface antigens (VSAs) such as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) may vary with malaria severity. The influence of ABO blood group on antibody development is not understood. METHODS: Immunoglobulin G antibodies to VSAs in Papua New Guinean children with severe (n = 41) or uncomplicated (n = 30) malaria were measured by flow cytometry using homologous P falciparum isolates. Isolates were incubated with ABO-matched homologous and heterologous acute and convalescent plasma. RNA was used to assess var gene transcription. RESULTS: Antibodies to homologous, but not heterologous, isolates were boosted in convalescence. The relationship between antibody and severity varied by blood group. Antibodies to VSAs were similar in severe and uncomplicated malaria at presentation, higher in severe than uncomplicated malaria in convalescence, and higher in children with blood group O than other children. Six var gene transcripts best distinguished severe from uncomplicated malaria, including UpsA and 2 CIDRα1 domains. CONCLUSIONS: ABO blood group may influence antibody acquisition to VSAs and susceptibility to severe malaria. Children in Papua New Guinea showed little evidence of acquisition of cross-reactive antibodies following malaria. Var gene transcripts in Papua New Guinean children with severe malaria were similar to those reported from Africa.
  • Item
    No Preview Available
    Correction: Does Malaria Affect Placental Development? Evidence from In Vitro Models
    Umbers, AJ ; Stanisic, DI ; Ome, M ; Wangnapi, R ; Hanieh, S ; Unger, HW ; Robinson, LJ ; Lufele, E ; Baiwog, F ; Siba, PM ; King, CL ; Beeson, JG ; Mueller, I ; Aplin, JD ; Glazier, JD ; Rogerson, SJ ; Hviid, L (Public Library of Science (PLoS), 2013)
  • Item
    No Preview Available
    Prevalence and risk factors for symptoms of common mental disorders in early and late pregnancy in Vietnamese women: A prospective population-based study
    Fisher, J ; Tran, T ; Tran, TD ; Dwyer, T ; Nguyen, T ; Casey, GJ ; Simpson, JA ; Hanieh, S ; Biggs, B-A (Elsevier, 2013-04-05)
    BACKGROUND: Little is known about the prevalence of and risk factors for common mental disorders (CMD) in pregnant women in low-income countries. The aim of this study was to establish the prevalence of and psychosocial risk factors for clinically significant symptoms of CMD in early and late pregnancy in women in rural Viet Nam. METHODS: A population-based sample of women was surveyed in early and late pregnancy. CMD were assessed by the Edinburgh Postnatal Depression Scale-Viet Nam Validation and psychosocial risks by study-specific structured interviews. RESULTS: In total 497/523 (97%) eligible women were recruited and 419 (84%) provided complete data. Prevalence of CMD only in early pregnancy was 22.4% (95% CI 18.4-26.4); only in late pregnancy was 10.7% (95% CI 7.8-13.7) and at both assessment waves was 17.4% (95% CI 13.8-21.1). Non-economic and economic coincidental life adversity, intimate partner violence, past pregnancy loss, and childhood abuse were positively associated with persistent antenatal CMD. Older age, having a preference for the baby's sex, and nulli- or primiparity were risk factors for CMD in early pregnancy. CONCLUSIONS: Persistent antenatal CMD are prevalent in rural areas of Viet Nam. Psychosocial risk factors play a major role in this significant public health problem.
  • Item
    Thumbnail Image
    Eotaxin-2 and eotaxin-3 in malaria exposure and pregnancy.
    Mancebo-Pérez, C ; Vidal, M ; Aguilar, R ; Barrios, D ; Bardají, A ; Ome-Kaius, M ; Menéndez, C ; Rogerson, SJ ; Dobaño, C ; Moncunill, G ; Requena, P (Springer Science and Business Media LLC, 2022-11-15)
    BACKGROUND: Eotaxin-1 concentrations in plasma have been inversely associated with malaria exposure, malaria infection and pregnancy, but the effect of these conditions on the levels of the related chemokines eotaxin-2 and eotaxin-3 remains unknown. METHODS: Eotaxin-2 and -3 concentrations were measured in 310 peripheral or placental plasma samples from pregnant and non-pregnant individuals from Papua New Guinea (malaria-endemic country) and Spain (malaria-naïve individuals) with previous data on eotaxin-1 concentrations. Correlations between eotaxin concentrations were examined with the Spearman's test. Differences in eotaxin concentrations among groups were evaluated with the Kruskal-Wallis or Mann Whitney tests. The pairwise Wilcoxon test was performed to compare eotaxin-2 concentration between peripheral and placental matched plasmas. Univariable and multivariable linear regression models were estimated to assess the association between eotaxins and Plasmodium infection or gestational age. RESULTS: Eotaxin-2 concentrations in plasma showed a weak positive correlation with eotaxin-3 (rho = 0.35, p < 0.05) concentrations. Eotaxin-2 concentrations in the malaria-exposed non-pregnant group were significantly lower than the in the malaria-naive non-pregnant and the malaria-exposed pregnant groups. Eotaxin-3 plasma concentrations were lower in malaria-exposed than in non-exposed groups (p < 0.05), but no differences were found associated to pregnancy. Eotaxin-2 and eotaxin-3 plasma concentrations were negatively correlated with anti-Plasmodium IgG levels: PfDBL5ε-IgG (rhoEo2 = - 0.35, p = 0.005; rhoEo3 =- 0.37, p = 0.011), and eotaxin-3 was negatively correlated with PfDBL3x-IgG levels (rhoEo3 =- 0.36; p = 0.011). Negative correlations of eotaxin-2 and 3 in plasma were also observed with atypical memory B cells (rhoEo2 = - 0.37, p < 0.001; rhoEo3= - 0.28, p = 0.006), a B cell subset expanded in malaria-exposed individuals. In addition, a borderline negative association was observed between eotaxin-3 concentrations and Plasmodium infection (adjusted effect estimate, β = - 0.279, 95% CI - 0.605; 0.047, p = 0.091). Moreover, eotaxin-2 placental concentrations were significantly increased compared to peripheral concentrations in the malaria-exposed pregnant group whereas the contrary was observed in the non-exposed pregnant group (p < 0.005). CONCLUSION: Although a clear epidemiological negative association is observed between eotaxins concentrations and malaria exposure and/or infection, pregnancy may alter this association for eotaxin-2. Further research is required to understand the role of these chemokines in this disease and in combination with pregnancy.
  • Item
    No Preview Available
    Identifying Targets of Protective Antibodies against Severe Malaria in Papua, Indonesia, Using Locally Expressed Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1
    Rambhatla, JS ; Tonkin-Hill, GQ ; Takashima, E ; Tsuboi, T ; Noviyanti, R ; Trianty, L ; Sebayang, BF ; Lampah, DA ; Marfurt, J ; Price, RN ; Anstey, NM ; Papenfuss, AT ; Damelang, T ; Chung, AW ; Duffy, MF ; Rogerson, SJ ; Saeij, JPJ (AMER SOC MICROBIOLOGY, 2022-02)
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multidomain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia, with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s, including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal component analysis, antibodies to 3 of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLβ13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults.
  • Item
    Thumbnail Image
    Pathogenicity and virulence of malaria: Sticky problems and tricky solutions
    Walker, IS ; Rogerson, SJ (TAYLOR & FRANCIS INC, 2023-12-31)
    Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
  • Item
    Thumbnail Image
    Acquisition of antibodies to Plasmodium falciparum and Plasmodium vivax antigens in pregnant women living in a low malaria transmission area of Brazil
    Kassa, MW ; Hasang, W ; Barateiro, A ; Damelang, T ; Brewster, J ; Dombrowski, JGG ; Longley, RJJ ; Chung, AW ; Wunderlich, G ; Mueller, I ; Aitken, EH ; Marinho, CRF ; Rogerson, SJJ (BMC, 2022-12-01)
    BACKGROUND: Pregnant women have increased susceptibility to Plasmodium falciparum malaria and acquire protective antibodies over successive pregnancies. Most studies that investigated malaria antibody responses in pregnant women are from high transmission areas in sub-Saharan Africa, while reports from Latin America are scarce and inconsistent. The present study sought to explore the development of antibodies against P. falciparum and Plasmodium vivax antigens in pregnant women living in a low transmission area in the Brazilian Amazon. METHODS: In a prospective cohort study, plasma samples from 408 pregnant women (of whom 111 were infected with P. falciparum, 96 had infections with P. falciparum and P. vivax, and 201 had no Plasmodium infection) were used to measure antibody levels. Levels of IgG and opsonizing antibody to pregnancy-specific variant surface antigens (VSAs) on infected erythrocytes (IEs), 10 recombinant VAR2CSA Duffy binding like (DBL domains), 10 non-pregnancy-specific P. falciparum merozoite antigens, and 10 P. vivax antigens were measured by flow cytometry, ELISA, and multiplex assays. Antibody levels and seropositivity among the groups were compared. RESULTS: Antibodies to VSAs on P. falciparum IEs were generally low but were higher in currently infected women and women with multiple P. falciparum episodes over pregnancy. Many women (21%-69%) had antibodies against each individual VAR2CSA DBL domain, and antibodies to DBLs correlated with each other (r ≥ 0.55, p < 0.0001), but not with antibody to VSA or history of infection. Infection with either malaria species was associated with higher seropositivity rate for antibodies against P. vivax proteins, adjusted odds ratios (95% CI) ranged from 5.6 (3.2, 9.7), p < 0.0001 for PVDBPII-Sal1 to 15.7 (8.3, 29.7), p < 0.0001 for PvTRAg_2. CONCLUSIONS: Pregnant Brazilian women had low levels of antibodies to pregnancy-specific VSAs that increased with exposure. They frequently recognized both VAR2CSA DBL domains and P. vivax antigens, but only the latter varied with infection. Apparent antibody prevalence is highly dependent on the assay platform used.
  • Item
    Thumbnail Image
    Relationship of circulating Plasmodium falciparum lifecycle stage to circulating parasitemia and total parasite biomass
    Duffy, MF ; Tonkin-Hill, GQ ; Trianty, L ; Noviyanti, R ; Nguyen, HHT ; Rambhatla, JS ; McConville, MJ ; Rogerson, SJ ; Brown, GV ; Price, RN ; Anstey, NM ; Day, KP ; Papenfuss, AT (NATURE PORTFOLIO, 2022-09-23)
  • Item
    Thumbnail Image
    Induction, decay, and determinants of functional antibodies following vaccination with the RTS,S malaria vaccine in young children
    Feng, G ; Kurtovic, L ; Agius, PA ; Aitken, EH ; Sacarlal, J ; Wines, BD ; Hogarth, PM ; Rogerson, SJ ; Fowkes, FJ ; Dobano, C ; Beeson, JG (BMC, 2022-08-25)
    BACKGROUND: RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. Antibodies play the major role in vaccine-induced immunity, but knowledge on the induction, decay, and determinants of antibody function is limited, especially among children. Antibodies that promote opsonic phagocytosis and other cellular functions appear to be important contributors to RTS,S immunity. METHODS: We studied a phase IIb trial of RTS,S/AS02 conducted in young children in malaria-endemic regions of Mozambique. We evaluated the induction of antibodies targeting the circumsporozoite protein (CSP, vaccine antigen) that interact with Fcγ-receptors (FcRγs) and promote phagocytosis (neutrophils, monocytes, THP-1 cells), antibody-dependent respiratory burst (ADRB) by neutrophils, and natural killer (NK) cell activity, as well as the temporal kinetics of responses over 5 years of follow-up (ClinicalTrials.gov registry number NCT00197041). RESULTS: RTS,S vaccination induced CSP-specific IgG with FcγRIIa and FcγRIII binding activity and promoted phagocytosis by neutrophils, THP-1 monocytes, and primary human monocytes, neutrophil ADRB activity, and NK cell activation. Responses were highly heterogenous among children, and the magnitude of neutrophil phagocytosis by antibodies was relatively modest, which may reflect modest vaccine efficacy. Induction of functional antibodies was lower among children with higher malaria exposure. Functional antibody magnitude and the functional activity of antibodies largely declined within a year post-vaccination, and decay were highest in the first 6 months, consistent with the decline in vaccine efficacy over that time. Decay rates varied for different antibody parameters and decay was slower for neutrophil phagocytosis. Biostatistical modelling suggested IgG1 and IgG3 contribute in promoting FcγR binding and phagocytosis, and IgG targeting the NANP-repeat and C-terminal regions CSP were similarly important for functional activities. CONCLUSIONS: Results provide new insights to understand the modest and time-limited efficacy of RTS,S in children and the induction of antibody functional activities. Improving the induction and maintenance of antibodies that promote phagocytosis and cellular functions, and combating the negative effect of malaria exposure on vaccine responses are potential strategies for improving RTS,S efficacy and longevity.
  • Item
    Thumbnail Image
    Associations of maternal iron deficiency with malaria infection in a cohort of pregnant Papua New Guinean women
    Unger, HW ; Bleicher, A ; Ome-Kaius, M ; Aitken, EH ; Rogerson, SJ (BMC, 2022-05-26)
    BACKGROUND: Iron deficiency (ID) is common in malaria-endemic settings. Intermittent preventative treatment of malaria in pregnancy (IPTp) and iron supplementation are core components of antenatal care in endemic regions to prevent adverse pregnancy outcomes. ID has been associated with reduced risk of malaria infection, and correspondingly, iron supplementation with increased risk of malaria infection, in some studies. METHODS: A secondary analysis was conducted amongst 1888 pregnant women enrolled in a malaria prevention trial in Papua New Guinea. Maternal ID was defined as inflammation-corrected plasma ferritin levels < 15 μg/L at antenatal enrolment. Malaria burden (Plasmodium falciparum, Plasmodium vivax) was determined by light microscopy, polymerase chain reaction, and placental histology. Multiple logistic and linear regression analyses explored the relationship of ID or ferritin levels with indicators of malaria infection. Models were fitted with interaction terms to assess for modification of iron-malaria relationships by gravidity or treatment arm. RESULTS: Two-thirds (n = 1226) and 13.7% (n = 258) of women had ID and peripheral parasitaemia, respectively, at antenatal enrolment (median gestational age: 22 weeks), and 18.7% (120/1,356) had evidence of malaria infection on placental histology. Overall, ID was associated with reduced odds of peripheral parasitaemia at enrolment (adjusted odds ratio [aOR] 0.50; 95% confidence interval [95% CI] 0.38, 0.66, P < 0.001); peripheral parasitaemia at delivery (aOR 0.68, 95% CI 0.46, 1.00; P = 0.050); and past placental infection (aOR 0.35, 95% CI 0.24, 0.50; P < 0.001). Corresponding increases in the odds of infection were observed with two-fold increases in ferritin levels. There was effect modification of iron-malaria relationships by gravidity. At delivery, ID was associated with reduced odds of peripheral parasitaemia amongst primigravid (AOR 0.44, 95% CI 0.25, 0.76; P = 0.003), but not multigravid women (AOR 1.12, 95% CI 0.61, 2.05; P = 0.720). A two-fold increase in ferritin associated with increased odds of placental blood infection (1.44, 95% CI 1.06, 1.96; P = 0.019) and active placental infection on histology amongst primigravid women only (1.24, 95% CI 1.00, 1.54; P = 0.052). CONCLUSIONS: Low maternal ferritin at first antenatal visit was associated with a lower risk of malaria infection during pregnancy, most notably in primigravid women. The mechanisms by which maternal iron stores influence susceptibility to infection with Plasmodium species require further investigation.