Infectious Diseases - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Malaria and immunity during pregnancy and postpartum: a tale of two species
    Mclean, ARD ; Ataide, R ; Simpson, JA ; Beeson, JG ; Fowkes, FJI (CAMBRIDGE UNIV PRESS, 2015-07)
    It is well established that pregnant women are at an increased risk of Plasmodium falciparum infection when compared to non-pregnant individuals and limited epidemiological data suggest Plasmodium vivax risk also increases with pregnancy. The risk of P. falciparum declines with successive pregnancies due to the acquisition of immunity to pregnancy-specific P. falciparum variants. However, despite similar declines in P. vivax risk with successive pregnancies, there is a paucity of evidence P. vivax-specific immunity. Cross-species immunity, as well as immunological and physiological changes that occur during pregnancy may influence the susceptibility to both P. vivax and P. falciparum. The period following delivery, the postpartum period, is relatively understudied and available epidemiological data suggests that it may also be a period of increased risk of infection to Plasmodium spp. Here we review the literature and directly compare and contrast the epidemiology, clinical pathogenesis and immunological features of P. vivax and P. falciparum in pregnancy, with a particular focus on studies performed in areas co-endemic for both species. Furthermore, we review the intriguing epidemiology literature of both P. falciparum and P. vivax postpartum and relate observations to the growing literature pertaining to malaria immunology in the postpartum period.
  • Item
    Thumbnail Image
    Antibody responses to Plasmodium falciparum and Plasmodium vivax blood-stage and sporozoite antigens in the postpartum period
    McLean, ARD ; Boel, ME ; McGready, R ; Ataide, R ; Drew, D ; Tsuboi, T ; Beeson, JG ; Nosten, F ; Simpson, JA ; Fowkes, FJI (NATURE PORTFOLIO, 2016-08-25)
    During pregnancy a variety of immunological changes occur to accommodate the fetus. It is unknown whether these changes continue to affect humoral immunity postpartum or how quickly they resolve. IgG levels were measured to P. falciparum and P. vivax antigens in 201 postpartum and 201 controls over 12 weeks. Linear mixed-effects models assessed antibody maintenance over time and the effect of microscopically confirmed Plasmodium spp. infection on antibody levels, and whether this was different in postpartum women compared with control women. Postpartum women had reduced Plasmodium spp. antibody levels compared to controls at baseline. Over 12 weeks, mean antibody levels in postpartum women increased to levels observed in control women. Microscopically confirmed P. falciparum and P. vivax infections during follow-up were associated with an increase in species-specific antibodies with similar magnitudes of boosting observed in postpartum and control women. Antibodies specific for pregnancy-associated, VAR2CSA-expressing parasites did not rapidly decline postpartum and did not boost in response to infection in either postpartum or control women. After pregnancy, levels of malaria-specific antibodies were reduced, but recovered to levels seen in control women. There was no evidence of an impaired ability to mount a boosting response in postpartum women.
  • Item
    Thumbnail Image
    Antibody Responses to Plasmodium falciparum and Plasmodium vivax and Prospective Risk of Plasmodium spp. Infection Postpartum
    McLean, ARD ; Boel, M ; McGready, R ; Ataide, R ; Drew, D ; Tsuboi, T ; Beeson, JG ; Nosten, F ; Simpson, JA ; Fowkes, FJI (AMER SOC TROP MED & HYGIENE, 2017)
    AbstractPostpartum women may have an altered susceptibility to Plasmodium falciparum and Plasmodium vivax. The relationship between naturally acquired malarial immunity and susceptibility to malaria postpartum is yet to be determined. IgG levels were measured against P. falciparum and P. vivax antigens from delivery in 201 postpartum and 201 nonpregnant controls over 12 weeks. Associations between time-varying antibody levels and time to first microscopically confirmed species-specific infection were determined by Cox regression. Associations between antibody levels and prospective risk of Plasmodium infection were similar in postpartum and control women. A 2-fold increase in P. falciparum antibody levels was associated with increased prospective risk of P. falciparum infection (hazard ratio [HR] range = 1.37-1.94). Antibody levels against most P. vivax antigens displayed no association with prospective risk of P. vivax infection (HR range = 1.02-1.05) with the exception of PvMSP119 antibodies that were weakly associated with prospective risk of P. vivax infection (HR = 1.14 (95% confidence interval = 1.02, 1.28) per 2-fold increase in levels). Associations between antibody levels and prospective risk of infection attenuated when adjusted for documented retrospective exposure. Serology may be a useful tool to predict and monitor women at increased risk of P. falciparum infection postpartum, particularly in the absence of a detailed history of retrospective infections.
  • Item
    Thumbnail Image
    Declining Transmission and Immunity to Malaria and Emerging Artemisinin Resistance in Thailand: A Longitudinal Study
    Ataide, R ; Powell, R ; Moore, K ; McLean, A ; Phyo, AP ; Nair, S ; White, M ; Anderson, TJ ; Beeson, JG ; Simpson, JA ; Nosten, F ; Fowkes, FJI (OXFORD UNIV PRESS INC, 2017-09-15)
    BACKGROUND: Reductions in malaria transmission decrease naturally acquired immunity, which may influence the emergence of Plasmodium falciparum artemisinin-resistant phenotypes and genotypes over time. METHODS: Antibodies specific for P. falciparum antigens were determined in uncomplicated hyperparasitemic malaria patients over a 10-year period of declining malaria transmission and emerging artemisinin resistance in northwestern Thailand. We investigated the association between antibody levels and both parasite clearance time (PCt½) and artemisinin resistance-associated kelch13 genotypes over time. RESULTS: Immunity to P. falciparum declined prior to 2004, preceding the emergence of artemisinin resistance-associated genotypes and phenotypes (maximum mean change in antibody level per year: anti-MSP142 = -0.17; 95% confidence interval [CI] = -.31 to -.04; P = .01). In this period of declining immunity, and in the absence of kelch13 mutations, PCt½ increased. Between 2007 and 2011, levels of antibodies fluctuated, and higher antibody levels were associated with faster PCt½ (maximum yearly change in PCt½, in hours: EBA140rII = -0.39; 95% CI = -.61 to -.17; P < .001). CONCLUSIONS: Understanding the impact of changing transmission and immunity on the emergence of artemisinin resistance is important particularly as increased malaria control and elimination activities may enhance immunological conditions for the expansion of artemisinin-resistant P. falciparum.
  • Item
    Thumbnail Image
    Contribution of Functional Antimalarial Immunity to Measures of Parasite Clearance in Therapeutic Efficacy Studies of Artemisinin Derivatives
    O'Flaherty, K ; Ataide, R ; Zaloumis, SG ; Ashley, EA ; Powell, R ; Feng, G ; Reiling, L ; Dondorp, AM ; Day, NP ; Dhorda, M ; Fairhurst, RM ; Lim, P ; Amaratunga, C ; Pukrittayakamee, S ; Tran, TH ; Htut, Y ; Mayxay, M ; Abul Faiz, M ; Beeson, JG ; Nosten, F ; Simpson, JA ; White, NJ ; Fowkes, FJ (OXFORD UNIV PRESS INC, 2019-10-01)
    BACKGROUND: Antibodies to the blood stages of malaria parasites enhance parasite clearance and antimalarial efficacy. The antibody subclass and functions that contribute to parasite clearance during antimalarial treatment and their relationship to malaria transmission intensity have not been characterized. METHODS: Levels of immunoglobulin G (IgG) subclasses and C1q fixation in response to Plasmodium falciparum merozoite antigens (erythrocyte-binding antigen [EBA] 175RIII-V, merozoite surface protein 2 [MSP-2], and MSP-142) and opsonic phagocytosis of merozoites were measured in a multinational trial assessing the efficacy of artesunate therapy across 11 Southeast Asian sites. Regression analyses assessed the effects of antibody seropositivity on the parasite clearance half-life (PC½), having a PC½ of ≥5 hours, and having parasitemia 3 days after treatment. RESULTS: IgG3, followed by IgG1, was the predominant IgG subclass detected (seroprevalence range, 5%-35% for IgG1 and 27%-41% for IgG3), varied across study sites, and was lowest in study sites with the lowest transmission intensity and slowest mean PC½. IgG3, C1q fixation, and opsonic-phagocytosis seropositivity were associated with a faster PC½ (range of the mean reduction in PC½, 0.47-1.16 hours; P range, .001-.03) and a reduced odds of having a PC½ of ≥5 hours and having parasitemia 3 days after treatment. CONCLUSIONS: The prevalence of IgG3, complement-fixing antibodies, and merozoite phagocytosis vary according to transmission intensity, are associated with faster parasite clearance, and may be sensitive surrogates of an augmented clearance capacity of infected erythrocytes. Determining the functional immune mechanisms associated with parasite clearance will improve characterization of artemisinin resistance.