Bio21 - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    Entry of the antipsychotic drug, olanzapine, into the developing rat brain in mono- and combination therapies.
    Huang, Y ; Qiu, F ; Habgood, M ; Nie, S ; Dziegielewska, K ; Saunders, N (F1000 Research Ltd, 2022)
    Background: Olanzapine is used to treat schizophrenia and bipolar disorder in women of childbearing age. Continuation of psychotropic medications throughout pregnancy and lactation is often required as cessation could be dangerous for both mother and child. However, there is a lack of information on the transfer of these drugs into the developing brain. Methods: Sprague Dawley rats at three developmental ages: embryonic day E19, postnatal day P4 and non-pregnant adult females were administered unlabelled or radiolabelled ( 3H) olanzapine (0.15 mg/kg) either as monotherapy or in combination with each of seven other common medications. Similar injections were administered to pregnant E19 females to investigate placental transfer. Olanzapine in plasma, cerebrospinal fluid (CSF) and brain was measured by liquid scintillation counting after a single dose (acute) or following 5 days of treatment (prolonged). Results: Olanzapine entry into brain and CSF was not age-dependent. Prolonged olanzapine treatment reduced placental transfer from 53% to 46% (p<0.05). Co-administration of digoxin or lamotrigine with olanzapine increased its entry into the fetal brain, whereas paracetamol decreased its entry into the CSF. Placental transfer of olanzapine was increased by co-treatment with cimetidine and digoxin, whereas co-treatment with lamotrigine, paracetamol or valproate led to a substantial decrease. Repeated co-treatment of digoxin and olanzapine increased olanzapine transfer into the brain and CSF, but not across the placenta. Overall entry of olanzapine from maternally administered drugs into the fetal brain was higher after combination therapy with cimetidine and digoxin. Conclusions: Co-administration of olanzapine with some commonly used drugs affected its entry into the fetus and its developing brain to a greater extent than in adults. It appears that protection of the fetal brain for these drugs primarily comes from the placenta rather than from the fetal brain barriers. Results suggest that drug combinations should be used with caution particularly during pregnancy.
  • Item
    Thumbnail Image
    Respiratory strategy at birth initiates distinct lung injury phenotypes in the preterm lamb lung
    Pereira-Fantini, PM ; Ferguson, K ; McCall, K ; Oakley, R ; Perkins, E ; Byars, S ; Williamson, N ; Nie, S ; Tingay, DG (BMC, 2022-12-14)
    BACKGROUND: A lack of clear trial evidence often hampers clinical decision-making during support of the preterm lung at birth. Protein biomarkers have been used to define acute lung injury phenotypes and improve patient selection for specific interventions in adult respiratory distress syndrome. The objective of the study was to use proteomics to provide a deeper biological understanding of acute lung injury phenotypes resulting from different aeration strategies at birth in the preterm lung. METHODS: Changes in protein abundance against an unventilated group (n = 7) were identified via mass spectrometry in a biobank of gravity dependent and non-dependent lung tissue from preterm lambs managed with either a Sustained Inflation (SI, n = 20), Dynamic PEEP (DynPEEP, n = 19) or static PEEP (StatPEEP, n = 11). Ventilation strategy-specific pathways and functions were identified (PANTHER and WebGestalt Tool) and phenotypes defined using integrated analysis of proteome, physiological and clinical datasets (MixOmics package). RESULTS: 2372 proteins were identified. More altered proteins were identified in the non-dependent lung, and in SI group than StatPEEP and DynPEEP. Different inflammation, immune system, apoptosis and cytokine pathway enrichment were identified for each strategy and lung region. Specific integration maps of clinical and physiological outcomes to specific proteins could be generated for each strategy. CONCLUSIONS: Proteomics mapped the molecular events initiating acute lung injury and identified detailed strategy-specific phenotypes. This study demonstrates the potential to characterise preterm lung injury by the direct aetiology and response to lung injury; the first step towards true precision medicine in neonatology.
  • Item
    Thumbnail Image
    A Census of Hsp70-Mediated Proteome Solubility Changes upon Recovery from Heat Stress
    Sui, X ; Cox, D ; Nie, S ; Reid, GE ; Hatters, DM (AMER CHEMICAL SOC, 2022-05-06)
    Eukaryotic cells respond to heat shock through several regulatory processes including upregulation of stress responsive chaperones and reversible shutdown of cellular activities through formation of protein assemblies. However, the underlying regulatory mechanisms of the recovery of these heat-induced protein assemblies remain largely elusive. Here, we measured the proteome abundance and solubility changes during recovery from heat shock in the mouse Neuro2a cell line. We found that prefoldins and translation machinery are rapidly down-regulated as the first step in the heat shock response. Analysis of proteome solubility reveals that a rapid mobilization of protein quality control machineries, along with changes in cellular energy metabolism, translational activity, and actin cytoskeleton are fundamental to the early stress responses. In contrast, longer term adaptation to stress involves renewal of core cellular components. Inhibition of the Hsp70 family, pivotal for the heat shock response, selectively and negatively affects the ribosomal machinery and delays the solubility recovery of many nuclear proteins. ProteomeXchange: PXD030069.
  • Item
    No Preview Available
    Widespread remodeling of proteome solubility in response to different protein homeostasis stresses
    Sui, X ; Pires, DEV ; Ormsby, AR ; Cox, D ; Nie, S ; Vecchi, G ; Vendruscolo, M ; Ascher, DB ; Reid, GE ; Hatters, DM (National Academy of Sciences, 2020-02-04)
    The accumulation of protein deposits in neurodegenerative diseases has been hypothesized to depend on a metastable subproteome vulnerable to aggregation. To investigate this phenomenon and the mechanisms that regulate it, we measured the solubility of the proteome in the mouse Neuro2a cell line under six different protein homeostasis stresses: 1) Huntington’s disease proteotoxicity, 2) Hsp70, 3) Hsp90, 4) proteasome, 5) endoplasmic reticulum (ER)-mediated folding inhibition, and 6) oxidative stress. Overall, we found that about one-fifth of the proteome changed solubility with almost all of the increases in insolubility were counteracted by increases in solubility of other proteins. Each stress directed a highly specific pattern of change, which reflected the remodeling of protein complexes involved in adaptation to perturbation, most notably, stress granule (SG) proteins, which responded differently to different stresses. These results indicate that the protein homeostasis system is organized in a modular manner and aggregation patterns were not correlated with protein folding stability (ΔG). Instead, distinct cellular mechanisms regulate assembly patterns of multiple classes of protein complexes under different stress conditions.
  • Item
    Thumbnail Image
    Thermal proteome profiling reveals Haemonchus orphan protein HCO_011565 as a target of the nematocidal small molecule UMW-868
    Taki, ACC ; Wang, T ; Nguyen, NNN ; Ang, C-S ; Leeming, MGG ; Nie, S ; Byrne, JJJ ; Young, NDD ; Zheng, Y ; Ma, G ; Korhonen, PKK ; Koehler, AVV ; Williamson, NAA ; Hofmann, A ; Chang, BCH ; Haeberli, C ; Keiser, J ; Jabbar, A ; Sleebs, BEE ; Gasser, RBB (FRONTIERS MEDIA SA, 2022-10-14)
    Parasitic roundworms (nematodes) cause destructive diseases, and immense suffering in humans and other animals around the world. The control of these parasites relies heavily on anthelmintic therapy, but treatment failures and resistance to these drugs are widespread. As efforts to develop vaccines against parasitic nematodes have been largely unsuccessful, there is an increased focus on discovering new anthelmintic entities to combat drug resistant worms. Here, we employed thermal proteome profiling (TPP) to explore hit pharmacology and to support optimisation of a hit compound (UMW-868), identified in a high-throughput whole-worm, phenotypic screen. Using advanced structural prediction and docking tools, we inferred an entirely novel, parasite-specific target (HCO_011565) of this anthelmintic small molecule in the highly pathogenic, blood-feeding barber's pole worm, and in other socioeconomically important parasitic nematodes. The "hit-to-target" workflow constructed here provides a unique prospect of accelerating the simultaneous discovery of novel anthelmintics and associated parasite-specific targets.
  • Item
    Thumbnail Image
    Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy
    Xie, SC ; Metcalfe, RD ; Dunn, E ; Morton, CJ ; Huang, S-C ; Puhalovich, T ; Du, Y ; Wittlin, S ; Nie, S ; Luth, MR ; Ma, L ; Kim, M-S ; Pasaje, CFA ; Kumpornsin, K ; Giannangelo, C ; Houghton, FJ ; Churchyard, A ; Famodimu, MT ; Barry, DC ; Gillett, DL ; Dey, S ; Kosasih, CC ; Newman, W ; Niles, JC ; Lee, MCS ; Baum, J ; Ottilie, S ; Winzeler, EA ; Creek, DJ ; Williamson, N ; Parker, MW ; Brand, S ; Langston, SP ; Dick, LR ; Griffin, MDW ; Gould, AE ; Tilley, L (AMER ASSOC ADVANCEMENT SCIENCE, 2022-06-03)
    Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) are attractive drug targets, and we present class I and II aaRSs as previously unrecognized targets for adenosine 5'-monophosphate-mimicking nucleoside sulfamates. The target enzyme catalyzes the formation of an inhibitory amino acid-sulfamate conjugate through a reaction-hijacking mechanism. We identified adenosine 5'-sulfamate as a broad-specificity compound that hijacks a range of aaRSs and ML901 as a specific reagent a specific reagent that hijacks a single aaRS in the malaria parasite Plasmodium falciparum, namely tyrosine RS (PfYRS). ML901 exerts whole-life-cycle-killing activity with low nanomolar potency and single-dose efficacy in a mouse model of malaria. X-ray crystallographic studies of plasmodium and human YRSs reveal differential flexibility of a loop over the catalytic site that underpins differential susceptibility to reaction hijacking by ML901.
  • Item
    Thumbnail Image
    Proteomic analysis reveals exercise training induced remodelling of hepatokine secretion and uncovers syndecan-4 as a regulator of hepatic lipid metabolism
    De Nardo, W ; Miotto, PM ; Bayliss, J ; Nie, S ; Keenan, SN ; Montgomery, MK ; Watt, MJ (ELSEVIER, 2022-06)
    OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is linked to impaired lipid metabolism and systemic insulin resistance, which is partly mediated by altered secretion of liver proteins known as hepatokines. Regular physical activity can resolve NAFLD and improve its metabolic comorbidities, however, the effects of exercise training on hepatokine secretion and the metabolic impact of exercise-regulated hepatokines in NAFLD remain unresolved. Herein, we examined the effect of endurance exercise training on hepatocyte secreted proteins with the aim of identifying proteins that regulate metabolism and reduce NAFLD severity. METHODS: C57BL/6 mice were fed a high-fat diet for six weeks to induce NAFLD. Mice were exercise trained for a further six weeks, while the control group remained sedentary. Hepatocytes were isolated two days after the last exercise bout, and intracellular and secreted proteins were detected using label-free mass spectrometry. Hepatocyte secreted factors were applied to skeletal muscle and liver ex vivo and insulin action and fatty acid metabolism were assessed. Syndecan-4 (SDC4), identified as an exercise-responsive hepatokine, was overexpressed in the livers of mice using adeno-associated virus. Whole-body energy homeostasis was assessed by indirect calorimetry and skeletal muscle and liver metabolism was assessed using radiometric techniques. RESULTS: Proteomics analysis detected 2657 intracellular and 1593 secreted proteins from mouse hepatocytes. Exercise training remodelled the hepatocyte proteome, with differences in 137 intracellular and 35 secreted proteins. Bioinformatic analysis of hepatocyte secreted proteins revealed enrichment of tumour suppressive proteins and proteins involved in lipid metabolism and mitochondrial function, and suppression of oncogenes and regulators of oxidative stress. Hepatocyte secreted factors from exercise trained mice improved insulin action in skeletal muscle and increased hepatic fatty acid oxidation. Hepatocyte-specific overexpression of SDC4 reduced hepatic steatosis, which was associated with reduced hepatic fatty acid uptake, and blunted pro-inflammatory and pro-fibrotic gene expression. Treating hepatocytes with recombinant ectodomain of SDC4 (secreted form) recapitulated these effects with reduced fatty acid uptake, lipid storage and lipid droplet accumulation. CONCLUSIONS: Remodelling of hepatokine secretion is an adaptation to regular exercise training that induces changes in metabolism in the liver and skeletal muscle. SDC4 is a novel exercise-responsive hepatokine that decreases fatty acid uptake and reduces steatosis in the liver. By understanding the proteomic changes in hepatocytes with exercise, these findings have potential for the discovery of new therapeutic targets for NAFLD.
  • Item
    Thumbnail Image
    Helminth lipidomics: Technical aspects and future prospects
    Wang, T ; Nie, S ; Reid, GE ; Gasser, RB (ELSEVIER, 2021)
    Lipidomics is a relatively recent molecular research field, and explores lipids (fats) and their biology using advanced mass spectrometry technologies. Although this field has expanded significantly in biomedical and biotechnological disciplines, it is still in its infancy in molecular parasitology. Our goal here is to review and discuss technical aspects of MS-based lipidomics and its recent applications to parasitic worms, as well as challenges and future directions for worm lipid research. In a multi-omic paradigm, we expect that the exploration of lipidomic data for parasitic worms will yield important insights into lipid-associated biological pathways and processes, including the regulation of essential signalling pathways, parasite invasion, establishment, adaptation and development.
  • Item
    No Preview Available
    A Novel Antagonist Peptide Reveals a Physiological Role of Insulin-Like Peptide 5 in Control of Colorectal Function
    Pustovit, R ; Zhang, X ; Liew, JJM ; Praveen, P ; Liu, M ; Koo, A ; Oparija-Rogenmozere, L ; Ou, Q ; Kocan, M ; Nie, S ; Bathgate, RAD ; Furness, JB ; Hossain, MA (AMER CHEMICAL SOC, 2021-10-08)
    Insulin-like peptide 5 (INSL5), the natural ligand for the relaxin family peptide receptor 4 (RXFP4), is a gut hormone that is exclusively produced by colonic L-cells. We have recently developed an analogue of INSL5, INSL5-A13, that acts as an RXFP4 agonist in vitro and stimulates colorectal propulsion in wild-type mice but not in RXFP4-knockout mice. These results suggest that INSL5 may have a physiological role in the control of colorectal motility. To investigate this possibility, in this study we designed and developed a novel INSL5 analogue, INSL5-A13NR. This compound is a potent antagonist, without significant agonist activity, in two in vitro assays. We report here for the first time that this novel antagonist peptide blocks agonist-induced increase in colon motility in mice that express RXFP4. Our data also show that colorectal propulsion induced by intracolonic administration of bacterial products (short-chain fatty acids, SCFAs) is antagonized by INSL5-A13NR. Therefore, INSL5-A13NR is an important research tool and potential drug lead for the treatment of colon motility disorders, such as bacterial diarrheas.
  • Item
    Thumbnail Image
    Deep proteomic profiling unveils arylsulfatase A as a non-alcoholic steatohepatitis inducible hepatokine and regulator of glycemic control
    Montgomery, MK ; Bayliss, J ; Nie, S ; De Nardo, W ; Keenan, SN ; Miotto, PM ; Karimkhanloo, H ; Huang, C ; Schittenhelm, RB ; Don, AS ; Ryan, A ; Williamson, NA ; Ooi, GJ ; Brown, WA ; Burton, PR ; Parker, BL ; Watt, MJ (NATURE PORTFOLIO, 2022-03-10)
    Non-alcoholic steatohepatitis (NASH) and type 2 diabetes are closely linked, yet the pathophysiological mechanisms underpinning this bidirectional relationship remain unresolved. Using proteomic approaches, we interrogate hepatocyte protein secretion in two models of murine NASH to understand how liver-derived factors modulate lipid metabolism and insulin sensitivity in peripheral tissues. We reveal striking hepatokine remodelling that is associated with insulin resistance and maladaptive lipid metabolism, and identify arylsulfatase A (ARSA) as a hepatokine that is upregulated in NASH and type 2 diabetes. Mechanistically, hepatic ARSA reduces sulfatide content and increases lysophosphatidylcholine (LPC) accumulation within lipid rafts and suppresses LPC secretion from the liver, thereby lowering circulating LPC and lysophosphatidic acid (LPA) levels. Reduced LPA is linked to improvements in skeletal muscle insulin sensitivity and systemic glycemic control. Hepatic silencing of Arsa or inactivation of ARSA's enzymatic activity reverses these effects. Together, this study provides a unique resource describing global changes in hepatokine secretion in NASH, and identifies ARSA as a regulator of liver to muscle communication and as a potential therapeutic target for type 2 diabetes.