Bio21 - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Spatio-Temporal Metabolite and Elemental Profiling of Salt Stressed Barley Seeds During Initial Stages of Germination by MALDI-MSI and mu-XRF Spectrometry
    Gupta, S ; Rupasinghe, T ; Callahan, DL ; Natera, SHA ; Smith, PMC ; Hill, CB ; Roessner, U ; Boughton, BA (Frontiers Media, 2019-09-25)
    Seed germination is the essential first step in crop establishment, and can be severely affected by salinity stress which can inhibit essential metabolic processes during the germination process. Salt stress during seed germination can trigger lipid-dependent signalling cascades that activate plant adaptation processes, lead to changes in membrane fluidity to help resist the stress, and cause secondary metabolite responses due to increased oxidative stress. In germinating barley (Hordeum vulgare), knowledge of the changes in spatial distribution of lipids and other small molecules at a cellular level in response to salt stress is limited. In this study, mass spectrometry imaging (MSI), liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray fluorescence (XRF) were used to determine the spatial distribution of metabolites, lipids and a range of elements, such as K+ and Na+, in seeds of two barley genotypes with contrasting germination phenology (Australian barley varieties Mundah and Keel). We detected and tentatively identified more than 200 lipid species belonging to seven major lipid classes (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, prenol lipids, sterol lipids, and polyketides) that differed in their spatial distribution based on genotype (Mundah or Keel), time post-imbibition (0 to 72 h), or treatment (control or salt). We found a tentative flavonoid was discriminant in post-imbibed Mundah embryos under saline conditions, and a delayed flavonoid response in Keel relative to Mundah. We further employed MSI-MS/MS and LC-QToF-MS/MS to explore the identity of the discriminant flavonoid and study the temporal pattern in five additional barley genotypes. ICP-MS was used to quantify the elemental composition of both Mundah and Keel seeds, showing a significant increase in Na+ in salt treated samples. Spatial mapping of elements using µ-XRF localized the elements within the seeds. This study integrates data obtained from three mass spectrometry platforms together with µ-XRF to yield information on the localization of lipids, metabolites and elements improving our understanding of the germination process under salt stress at a molecular level.
  • Item
    Thumbnail Image
    A tandem liquid chromatography-mass spectrometry (LC-MS) method for profiling small molecules in complex samples
    Pyke, JS ; Callahan, DL ; Kanojia, K ; Bowne, J ; Sahani, S ; Tull, D ; Bacic, A ; McConville, MJ ; Roessner, U (SPRINGER, 2015-12)
  • Item
    Thumbnail Image
    MASTR-MS: a web-based collaborative laboratory information management system (LIMS) for metabolomics
    Hunter, A ; Dayalan, S ; De Souza, D ; Power, B ; Lorrimar, R ; Szabo, T ; Thu, N ; O'Callaghan, S ; Hack, J ; Pyke, J ; Nahid, A ; Barrero, R ; Roessner, U ; Likic, V ; Tull, D ; Bacic, A ; McConville, M ; Bellgard, M (SPRINGER, 2017-02)
    BACKGROUND: An increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments. RESULTS: Here we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS. CONCLUSION: MASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research community. It is freely available under the GNU GPL v3 licence and can be accessed from, https://muccg.github.io/mastr-ms/.
  • Item
    Thumbnail Image
    PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools
    O'Callaghan, S ; De Souza, DP ; Isaac, A ; Wang, Q ; Hodkinson, L ; Olshansky, M ; Erwin, T ; Appelbe, B ; Tull, DL ; Roessner, U ; Bacic, A ; McConville, MJ ; Likic, VA (BMC, 2012-05-30)
    BACKGROUND: Gas chromatography-mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. RESULTS: PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). CONCLUSIONS: PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface.