Bio21 - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 34
  • Item
    Thumbnail Image
    Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte
    Dasgupta, S ; Auth, T ; Gov, NS ; Satchwell, TJ ; Hanssen, E ; Zuccala, ES ; Riglar, DT ; Toye, AM ; Betz, T ; Baum, J ; Gompper, G (CELL PRESS, 2014-07-01)
    The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells.
  • Item
    Thumbnail Image
    One-step zero-background IgG reformatting of phage-displayed antibody fragments enabling rapid and high-throughput lead identification
    Chen, C-G ; Fabri, LJ ; Wilson, MJ ; Panousis, C (OXFORD UNIV PRESS, 2014-02)
    We describe a novel cloning method, referred to as insert-tagged (InTag) positive selection, for the rapid one-step reformatting of phage-displayed antibody fragments to full-length immunoglobulin Gs (IgGs). InTag positive selection enables recombinant clones of interest to be directly selected without cloning background, bypassing the laborious process of plating out cultures and colony screening and enabling the cloning procedure to be automated and performed in a high-throughput format. This removes a significant bottleneck in the functional screening of phage-derived antibody candidates and enables a large number of clones to be directly reformatted into IgG without the intermediate step of Escherichia coli expression and testing of soluble antibody fragments. The use of InTag positive selection with the Dyax Fab-on-phage antibody library is demonstrated, and optimized methods for the small-scale transient expression of IgGs at high levels are described. InTag positive selection cloning has the potential for wide application in high-throughput DNA cloning involving multiple inserts, markedly improving the speed and quality of selections from protein libraries.
  • Item
    Thumbnail Image
    The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade
    Wang, C ; Klechikov, AG ; Gharibyan, AL ; Warmlander, SKTS ; Jarvet, J ; Zhao, L ; Jia, X ; Shankar, SK ; Olofsson, A ; Brannstrom, T ; Mu, Y ; Graslund, A ; Morozova-Roche, LA (SPRINGER, 2014-04)
    Pro-inflammatory S100A9 protein is increasingly recognized as an important contributor to inflammation-related neurodegeneration. Here, we provide insights into S100A9 specific mechanisms of action in Alzheimer's disease (AD). Due to its inherent amyloidogenicity S100A9 contributes to amyloid plaque formation together with Aβ. In traumatic brain injury (TBI) S100A9 itself rapidly forms amyloid plaques, which were reactive with oligomer-specific antibodies, but not with Aβ and amyloid fibrillar antibodies. They may serve as precursor-plaques for AD, implicating TBI as an AD risk factor. S100A9 was observed in some hippocampal and cortical neurons in TBI, AD and non-demented aging. In vitro S100A9 forms neurotoxic linear and annular amyloids resembling Aβ protofilaments. S100A9 amyloid cytotoxicity and native S100A9 pro-inflammatory signaling can be mitigated by its co-aggregation with Aβ, which results in a variety of micron-scale amyloid complexes. NMR and molecular docking demonstrated transient interactions between native S100A9 and Aβ. Thus, abundantly present in AD brain pro-inflammatory S100A9, possessing also intrinsic amyloidogenic properties and ability to modulate Aβ aggregation, can serve as a link between the AD amyloid and neuroinflammatory cascades and as a prospective therapeutic target.
  • Item
    Thumbnail Image
    Exogenous administration of protease-resistant, non-matrix-binding IGFBP-2 inhibits tumour growth in a murine model of breast cancer
    Soh, C-L ; McNeil, K ; Owczarek, CM ; Hardy, MP ; Fabri, LJ ; Pearse, M ; Delaine, CA ; Forbes, BE (NATURE PUBLISHING GROUP, 2014-06-10)
    BACKGROUND: Insulin-like growth factors (IGF-I and IGF-II) signal via the type 1 IGF receptor (IGF-1R) and IGF-II also activates the insulin receptor isoform A (IR-A). Signalling via both receptors promotes tumour growth, survival and metastasis. In some instances IGF-II action via the IR-A also promotes resistance to anti-IGF-1R inhibitors. This study assessed the efficacy of two novel modified IGF-binding protein-2 (IGFBP-2) proteins that were designed to sequester both IGFs. The two modified IGFBP-2 proteins were either protease resistant alone or also lacked the ability to bind extracellular matrix (ECM). METHODS: The modified IGFBP-2 proteins were tested in vitro for their abilities to inhibit cancer cell proliferation and in vivo to inhibit MCF-7 breast tumour xenograft growth. RESULTS: Both mutants retained low nanomolar affinity for IGF-I and IGF-II (0.8-2.1-fold lower than IGFBP-2) and inhibited cancer cell proliferation in vitro. However, the combined protease resistant, non-matrix-binding mutant was more effective in inhibiting MCF-7 tumour xenograft growth and led to inhibition of angiogenesis. CONCLUSIONS: By removing protease cleavage and matrix-binding sites, modified IGFBP-2 was effective in inhibiting tumour growth and reducing tumour angiogenesis.
  • Item
    Thumbnail Image
    HIV-specific antibody-dependent phagocytosis matures during HIV infection
    Ana-Sosa-Batiz, F ; Johnston, APR ; Liu, H ; Center, RJ ; Rerks-Ngarm, S ; Pitisuttithum, P ; Nitayaphan, S ; Kaewkungwal, J ; Kim, JH ; Michael, NL ; Kelleher, AD ; Stratov, I ; Kent, SJ ; Kramski, M (WILEY, 2014-09)
    Antibody-dependent phagocytosis (ADP) is a potentially important immune mechanism to clear HIV. How HIV-specific ADP responses mature during HIV infection or in response to vaccinations administered, including the partially successful RV144 HIV vaccine, is not known. We established a modified ADP assay to measure internalisation of HIV antibody (Ab)-opsonised targets using a specific hybridisation internalisation probe. Labelled beads were coated with both biotinylated HIV gp140 envelope protein and a fluorescent internalisation probe, opsonised with Abs and incubated with a monocytic cell line. The fluorescence derived from the fluorescent internalisation probe on surface-bound beads, but not from internalised beads, was quenched by the addition of a complementary quencher probe. HIV Env-specific ADP was measured in 31 subjects during primary infection and early chronic HIV infection. Although ADP responses were present early during HIV infection, a significant increase in ADP responses in all 31 subjects studied was detected (P<0.001). However, when we tested 30 HIV-negative human subjects immunised with the Canarypox/gp120 vaccine regimen (subjects from the RV144 trial) we did not detect HIV-specific ADP activity. In conclusion, a modified assay was developed to measure HIV-specific ADP. Enhanced ADP responses early in the course of HIV infection were observed but no ADP activity was detected following the vaccinations administered in the RV144 trial. Improved vaccine regimens may be needed to capitalise on ADP-mediated immunity against HIV.
  • Item
    Thumbnail Image
    Muscle p70S6K phosphorylation in response to soy and dairy rich meals in middle aged men with metabolic syndrome: a randomised crossover trial
    Gran, P ; Larsen, AE ; Bonham, M ; Dordevic, AL ; Rupasinghe, T ; Silva, C ; Nahid, A ; Tull, D ; Sinclair, AJ ; Mitchell, CJ ; Cameron-Smith, D (BIOMED CENTRAL LTD, 2014-09-30)
    BACKGROUND: The mammalian target of rapamycin (mTOR) pathway is the primary regulator of muscle protein synthesis. Metabolic syndrome (MetS) is characterized by central obesity and insulin resistance; little is known about how MetS affects the sensitivity of the mTOR pathway to feeding. METHODS: The responsiveness of mTOR pathway targets such as p706Sk to a high protein meal containing either dairy or soy foods was investigated in healthy insulin sensitive middle-aged men and those presenting with metabolic syndrome (MetS). Twenty male subjects (10 healthy controls, 10 MetS) participated in a single-blinded randomized cross-over study. In a random sequence, subjects ingested energy-matched breakfasts composed predominately of either dairy-protein or soy-protein foods. Skeletal muscle biopsies were collected in the fasted state and at 2 and 4 h post-meal ingestion for the analysis of mTOR- and insulin-signalling kinase activation. RESULTS: Phosphorylated Akt and Insulin receptor substrate 1 (IRS1) increased during the postabsorptive period with no difference between groups. mTOR (Ser448) and ribosomal protein S6 phosphorylation increased 2 h following dairy meal consumption only. p70S6K (Thr389) phosphorylation was increased after feeding only in the control subjects and not in the MetS group. CONCLUSIONS: These data demonstrate that the consumption of a dairy-protein rich but not a soy-protein rich breakfast activates the phosphorylation of mTOR and ribosomal protein S6, required for protein synthesis in human skeletal muscle. Unlike healthy controls, subjects with MetS did not increase muscle p70S6K(Thr389) phosphorylation in response to a mixed meal. TRIAL REGISTRATION: This trial was registered with the Australian New Zealand Clinical Trials Registry (ANZCTR) as ACTRN12610000562077.
  • Item
    Thumbnail Image
    The BTB-ZF transcription factor Zbtb20 is driven by Irf4 to promote plasma cell differentiation and longevity
    Chevrier, S ; Emslie, D ; Shi, W ; Kratina, T ; Wellard, C ; Karnowski, A ; Erikci, E ; Smyth, GK ; Chowdhury, K ; Tarlinton, D ; Corcoran, LM (ROCKEFELLER UNIV PRESS, 2014-05-05)
    The transcriptional network regulating antibody-secreting cell (ASC) differentiation has been extensively studied, but our current understanding is limited. The mechanisms of action of known "master" regulators are still unclear, while the participation of new factors is being revealed. Here, we identify Zbtb20, a Bcl6 homologue, as a novel regulator of late B cell development. Within the B cell lineage, Zbtb20 is specifically expressed in B1 and germinal center B cells and peaks in long-lived bone marrow (BM) ASCs. Unlike Bcl6, an inhibitor of ASC differentiation, ectopic Zbtb20 expression in primary B cells facilitates terminal B cell differentiation to ASCs. In plasma cell lines, Zbtb20 induces cell survival and blocks cell cycle progression. Immunized Zbtb20-deficient mice exhibit curtailed humoral responses and accelerated loss of antigen-specific plasma cells, specifically from the BM pool. Strikingly, Zbtb20 induction does not require Blimp1 but depends directly on Irf4, acting at a newly identified Zbtb20 promoter in ASCs. These results identify Zbtb20 as an important player in late B cell differentiation and provide new insights into this complex process.
  • Item
    Thumbnail Image
    Rosiglitazone is a superior bronchodilator compared to chloroquine and β-adrenoceptor agonists in mouse lung slices
    Donovan, C ; Simoons, M ; Esposito, J ; Cheong, JN ; FitzPatrick, M ; Bourke, JE (BMC, 2014-03-12)
    BACKGROUND: Current therapy for relieving bronchoconstriction may be ineffective in severe asthma, particularly in the small airways. The aim of this study was to further characterise responses to the recently identified novel bronchodilators rosiglitazone (RGZ) and chloroquine (CQ) under conditions where β-adrenoceptor agonist efficacy was limited or impaired in mouse small airways within lung slices. METHODS: Relaxation to RGZ and CQ was assessed following submaximal methacholine (MCh) pre-contraction, in slices treated overnight with either RGZ, CQ or albuterol (ALB) (to induce β-adrenoceptor desensitization), and in slices treated with caffeine/ryanodine in which contraction is associated with increases in Ca2+ sensitivity in the absence of contractile agonist-induced Ca2+ oscillations. Furthermore, the effects of RGZ, CQ, ALB and isoproterenol (ISO) on the initiation and development of methacholine-induced contraction were also compared. RESULTS: RGZ and CQ, but not ALB or ISO, elicited complete relaxation with increasing MCh pre-contraction and maintained their potency and efficacy following β-adrenoceptor desensitization. RGZ, CQ and ALB maintained efficacy following overnight incubation with RGZ or CQ. Relaxation responses to all dilators were generally maintained but delayed after caffeine/ryanodine. Pre-treatment with RGZ, but not CQ, ALB or ISO, reduced MCh potency. CONCLUSIONS: This study demonstrates the superior effectiveness of RGZ in comparison to CQ and β-adrenoceptor agonists as a dilator of mouse small airways. Further investigation of the mechanisms underlying the relatively greater efficacy of RGZ under these conditions are warranted and should be extended to include studies in human asthmatic airways.
  • Item
    Thumbnail Image
    A Mechanism for Actin Filament Severing by Malaria Parasite Actin Depolymerizing Factor 1 via a Low Affinity Binding Interface
    Wong, W ; Webb, AI ; Olshina, MA ; Infusini, G ; Tan, YH ; Hanssen, E ; Catimel, B ; Suarez, C ; Condron, M ; Angrisano, F ; Neb, T ; Kovar, DR ; Baum, J (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2014-02-14)
    Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing.
  • Item
    Thumbnail Image
    Prion Infection Impairs Cholesterol Metabolism in Neuronal Cells
    Cui, HL ; Guo, B ; Scicluna, B ; Coleman, BM ; Lawson, VA ; Ellett, L ; Meikle, PJ ; Bukrinsky, M ; Mukhamedova, N ; Sviridov, D ; Hill, AF (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2014-01-10)
    Conversion of prion protein (PrP(C)) into a pathological isoform (PrP(Sc)) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumulation of cellular cholesterol. Increased abundance of ABCA1 in prion disease was confirmed in prion-infected mice. Mechanistically, conversion of PrP(C) to the pathological isoform led to PrP(Sc) accumulation in rafts, displacement of ABCA1 from rafts and the cell surface, and enhanced internalization of ABCA1. These effects were abolished with reversal of prion infection or by loading cells with cholesterol. Stimulation of ABCA1 expression with liver X receptor agonist or overexpression of heterologous ABCA1 reduced the conversion of prion protein into the pathological form upon infection. These findings demonstrate a reciprocal connection between prion infection and cellular cholesterol metabolism, which plays an important role in the pathogenesis of prion infection in neuronal cells.