Bio21 - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 200
  • Item
    Thumbnail Image
    Spectroscopic study of L-DOPA and dopamine binding on novel gold nanoparticles towards more efficient drug-delivery system for Parkinson's disease
    Kalcec, N ; Peranic, N ; Barbir, R ; Hall, CR ; Smith, TA ; Sani, MA ; Frkanec, R ; Separovic, F ; Vrcek, IV (PERGAMON-ELSEVIER SCIENCE LTD, 2022-03-05)
    Nano-drug delivery systems may potentially overcome current challenges in the treatment of Parkinson's disease (PD) by enabling targeted delivery and more efficient blood-brain penetration ability. This study investigates novel gold nanoparticles (AuNPs) to be used as delivery systems for L-DOPA and dopamine by considering their binding capabilities in the presence and absence of a model protein, bovine serum albumin (BSA). Four different AuNPs were prepared by surface functionalization with polyethylene glycol (PEG), 1-adamantylamine (Ad), 1-adamantylglycine (AdGly), and peptidoglycan monomer (PGM). Fluorescence and UV-Vis measurements demonstrated the strongest binding affinity and L-DOPA/dopamine loading efficiency for PGM-functionalized AuNPs with negligible impact of the serum protein presence. Thermodynamic analysis revealed a spontaneous binding process between L-DOPA or dopamine and AuNPs that predominantly occurred through van der Waals interactions/hydrogen bonds or electrostatic interactions. These results represent PGM-functionalized AuNPs as the most efficient at L-DOPA and dopamine binding with a potential to become a drug-delivery system for neurodegenerative diseases. Detailed investigation of L-DOPA/dopamine interactions with different AuNPs was described here for the first time. Moreover, this study highlights a cost- and time-effective methodology for evaluating drug binding to nanomaterials.
  • Item
    Thumbnail Image
    Growth of Gold Nanorods: A SAXS Study
    Seibt, S ; Zhang, H ; Mudie, S ; Foerster, S ; Mulvaney, P (AMER CHEMICAL SOC, 2021-09-16)
    Using simultaneous, in situ optical spectroscopy and time-resolved, small-angle X-ray scattering (SAXS), we have directly monitored the seeded growth of nearly monodisperse gold nanorods using hydroquinone as the reductant. Growth of the rods is much slower than with the ascorbate ion, allowing the rate of growth along both the longitudinal and transverse directions to be independently determined. The thickness of the stabilizing CTAB layer (3.2 ± 0.3 nm) has also been extracted. We find that increasing the hydrogen tetrachloroaurate(III) concentration produces longer rods, while conversely, increasing the hydroquinone concentration reduces the final aspect ratio. The final number of gold rods is smaller than the initial number of seed particles and decreases in the presence of larger concentrations of HAuCl4. The SAXS data reveal an early transition from a spherical morphology to an ellipsoidal one and then to spherically capped cylinders. The growth curve exhibits at least three distinct regimes: an initial phase comprising spherical seed growth, followed by symmetry breaking and slow elongation. A third phase is marked by rapid rod growth and increases in the aspect ratio. This process is temporally well resolved from the initial symmetry breaking but typically occurs when the rods are around 6 nm in diameter using hydroquinone as the reductant. The results provide qualitative support for the “popcorn model” proposed by Edgar et al. [ Formation of Gold Nanorods by a Stochastic “Popcorn” Mechanism. ACS Nano 2012, 6, 1116 1125 ].
  • Item
    Thumbnail Image
    Unravelling the mechanism of neurotensin recognition by neurotensin receptor 1
    Asadollahi, K ; Rajput, S ; de Zhang, LA ; Ang, C-S ; Nie, S ; Williamson, NA ; Griffin, MDW ; Bathgate, RAD ; Scott, DJ ; Weikl, TR ; Jameson, GNL ; Gooley, PR (NATURE PORTFOLIO, 2023-12-09)
    The conformational ensembles of G protein-coupled receptors (GPCRs) include inactive and active states. Spectroscopy techniques, including NMR, show that agonists, antagonists and other ligands shift the ensemble toward specific states depending on the pharmacological efficacy of the ligand. How receptors recognize ligands and the kinetic mechanism underlying this population shift is poorly understood. Here, we investigate the kinetic mechanism of neurotensin recognition by neurotensin receptor 1 (NTS1) using 19F-NMR, hydrogen-deuterium exchange mass spectrometry and stopped-flow fluorescence spectroscopy. Our results indicate slow-exchanging conformational heterogeneity on the extracellular surface of ligand-bound NTS1. Numerical analysis of the kinetic data of neurotensin binding to NTS1 shows that ligand recognition follows an induced-fit mechanism, in which conformational changes occur after neurotensin binding. This approach is applicable to other GPCRs to provide insight into the kinetic regulation of ligand recognition by GPCRs.
  • Item
    Thumbnail Image
    Structures of the interleukin 11 signalling complex reveal gp130 dynamics and the inhibitory mechanism of a cytokine variant
    Metcalfe, RD ; Hanssen, E ; Fung, KY ; Aizel, K ; Kosasih, CC ; Zlatic, CO ; Doughty, L ; Morton, CJ ; Leis, AP ; Parker, MW ; Gooley, PR ; Putoczki, TL ; Griffin, MDW (NATURE PORTFOLIO, 2023-11-20)
    Interleukin (IL-)11, an IL-6 family cytokine, has pivotal roles in autoimmune diseases, fibrotic complications, and solid cancers. Despite intense therapeutic targeting efforts, structural understanding of IL-11 signalling and mechanistic insights into current inhibitors are lacking. Here we present cryo-EM and crystal structures of the human IL-11 signalling complex, including the complex containing the complete extracellular domains of the shared IL-6 family β-receptor, gp130. We show that complex formation requires conformational reorganisation of IL-11 and that the membrane-proximal domains of gp130 are dynamic. We demonstrate that the cytokine mutant, IL-11 Mutein, competitively inhibits signalling in human cell lines. Structural shifts in IL-11 Mutein underlie inhibition by altering cytokine binding interactions at all three receptor-engaging sites and abrogating the final gp130 binding step. Our results reveal the structural basis of IL-11 signalling, define the molecular mechanisms of an inhibitor, and advance understanding of gp130-containing receptor complexes, with potential applications in therapeutic development.
  • Item
    No Preview Available
    Polymeric Nanoneedle Arrays Mediate Stiffness‐Independent Intracellular Delivery (Adv. Funct. Mater. 3/2022)
    Yoh, HZ ; Chen, Y ; Aslanoglou, S ; Wong, S ; Trifunovic, Z ; Crawford, S ; Lestrell, E ; Priest, C ; Alba, M ; Thissen, H ; Voelcker, NH ; Elnathan, R (Wiley, 2022-01)
    In article number 2104828, Yaping Chen, Nicolas H. Voelcker, Roey Elnathan, and co-workers demonstrate the fabrication of relatively low-cost and high throughput polymeric nanoneedles from cell culture polystyrene. The nanoneedles with precise geometry are imprinted directly on polystyrene from the cell culture petri dish via nanoimprint lithography. The nanoneedles arrays can precisely manipulate cellular processes and mediate intracellular delivery in mammalian cells. This presents opportunities for novel integration of nanostructures into traditional polymeric cell cultureware.
  • Item
    Thumbnail Image
    Development of Matrix-Embedded Bovine Tracheal Organoids to Study the Innate Immune Response against Bovine Respiratory Disease
    Quah, PS ; Tran, BM ; Corbin, VDA ; Chang, JJ-Y ; Wong, CY ; Diaz-Méndez, A ; Hartley, CA ; Zeng, W ; Hanssen, E ; Trifunovic, Z ; Reading, PC ; Jackson, DC ; Vincan, E ; Coin, LJM ; Deliyannis, G (MDPI, 2023)
    Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle. Bovine herpesvirus-1 (BHV-1) is one of the main culprits of BRD; however, research on BHV-1 is hampered by the lack of suitable models for infection and drug testing. In this study, we established a novel bovine tracheal organoid culture grown in a basement membrane extract type 2 (BME2) matrix and compared it with the air–liquid interface (ALI) culture system. After differentiation, the matrix-embedded organoids developed beating cilia and demonstrated a transcriptomic profile similar to the ALI culture system. The matrix-embedded organoids were also highly susceptible to BHV-1 infection and immune stimulation by Pam2Cys, an immunomodulator, which resulted in robust cytokine production and tracheal antimicrobial peptide mRNA upregulation. However, treatment of bovine tracheal organoid cultures with Pam2Cys was not sufficient to inhibit viral infection or replication, suggesting a role of the non-epithelial cellular microenvironment in vivo.
  • Item
    No Preview Available
    The Proteome and Lipidome of Extracellular Vesicles from Haemonchus contortus to Underpin Explorations of Host-Parasite Cross-Talk
    Wang, T ; Koukoulis, TF ; Vella, LJ ; Su, H ; Purnianto, A ; Nie, S ; Ang, C-S ; Ma, G ; Korhonen, PK ; Taki, AC ; Williamson, NA ; Reid, GE ; Gasser, RB (MDPI, 2023-07)
    Many parasitic worms have a major adverse impact on human and animal populations worldwide due to the chronicity of their infections. There is a growing body of evidence indicating that extracellular vesicles (EVs) are intimately involved in modulating (suppressing) inflammatory/immune host responses and parasitism. As one of the most pathogenic nematodes of livestock animals, Haemonchus contortus is an ideal model system for EV exploration. Here, employing a multi-step enrichment process (in vitro culture, followed by ultracentrifugation, size exclusion and filtration), we enriched EVs from H. contortus and undertook the first comprehensive (qualitative and quantitative) multi-omic investigation of EV proteins and lipids using advanced liquid chromatography-mass spectrometry and informatics methods. We identified and quantified 561 proteins and 446 lipids in EVs and compared these molecules with those of adult worms. We identified unique molecules in EVs, such as proteins linked to lipid transportation and lipid species (i.e., sphingolipids) associated with signalling, indicating the involvement of these molecules in parasite-host cross-talk. This work provides a solid starting point to explore the functional roles of EV-specific proteins and lipids in modulating parasite-host cross-talk, and the prospect of finding ways of disrupting or interrupting this relationship to suppress or eliminate parasite infection.
  • Item
    No Preview Available
    Selenium Nanoparticles as Potential Drug-Delivery Systems for the Treatment of Parkinson's Disease
    Kalcec, N ; Peranic, N ; Mamic, I ; Beus, M ; Hall, CR ; Smith, TA ; Sani, MA ; Turcic, P ; Separovic, F ; Vrcek, IV (AMER CHEMICAL SOC, 2023-09-20)
  • Item
    No Preview Available
    Encounter Complexes Between the N-terminal of Neurotensin with the Extracellular Loop 2 of the Neurotensin Receptor 1 Steer Neurotensin to the Orthosteric Binding Pocket
    Asadollahi, K ; Rajput, S ; Jameson, GNL ; Scott, DJ ; Gooley, PR (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2023-10-15)
    Neurotensin (NT) is a linear disordered peptide that activates two different class A GPCRs, neurotensin receptor 1 (NTS1) and NTS2. Resolved structures of the complex of the C-terminal fragment of NT, NT8-13, with NTS1 shows the peptide takes a well-defined structure in the bound state. However, the mechanisms underlying NT recognition of NTS1, and the conformational transition of NT upon binding NTS1 is an open question that if answered may aid discovery of highly selective drugs and reveal potential secondary binding sites on the surface of the receptor. Herein we investigated the interactions guiding NT to the orthosteric binding pocket of NTS1 by combining NMR experiments with kinetic analysis of the binding pathway using stopped-flow fluorescence and mutagenesis on both NT and NTS1. We show the presence of transient structures in the middle part of NT that kinetically regulate the binding of NT to NTS1. Moreover, our results indicate that the binding pathway of NT onto NTS1 is mediated via electrostatic interactions between the N-terminal region of NT with the extracellular loop 2 of NTS1. These interactions induce backbone conformational changes in neurotensin similar to the bound-state neurotensin, suggesting that the N-terminal region of NT and these interactions should be considered for development of selective drugs against NTS1.
  • Item
    No Preview Available
    Plasma lipids are dysregulated preceding diagnosis of preeclampsia or delivery of a growth restricted infant
    Bartho, LA ; Keenan, E ; Walker, SP ; MacDonald, TM ; Nijagal, B ; Tong, S ; Kaitu'u-Lino, TJ (ELSEVIER, 2023-08)
    BACKGROUND: Lipids serve as multifunctional metabolites that have important implications for the pregnant mother and developing fetus. Abnormalities in lipids have emerged as potential risk factors for pregnancy diseases, such as preeclampsia and fetal growth restriction. The aim of this study was to assess the potential of lipid metabolites for detection of late-onset preeclampsia and fetal growth restriction. METHODS: We used a case-cohort of 144 maternal plasma samples at 36 weeks' gestation from patients before the diagnosis of late-onset preeclampsia (n = 22), delivery of a fetal growth restricted infant (n = 55, defined as <5th birthweight centile), gestation-matched controls (n = 72). We performed liquid chromatography-tandem mass spectrometry (LC-QQQ) -based targeted lipidomics to identify 421 lipids, and fitted logistic regression models for each lipid, correcting for maternal age, BMI, smoking, and gestational diabetes. FINDINGS: Phosphatidylinositol 32:1 (AUC = 0.81) and cholesterol ester 17:1 (AUC = 0.71) best predicted the risk of developing preeclampsia or delivering a fetal growth restricted infant, respectively. Five times repeated five-fold cross validation demonstrated the lipids alone did not out-perform existing protein biomarkers, soluble tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) for the prediction of preeclampsia or fetal growth restriction. However, lipids combined with sFlt-1 and PlGF measurements improved disease prediction. INTERPRETATION: This study successfully identified 421 lipids in maternal plasma collected at 36 weeks' gestation from participants who later developed preeclampsia or delivered a fetal growth restricted infant. Our results suggest the predictive capacity of lipid measurements for gestational disorders holds the potential to improve non-invasive assessment of maternal and fetal health. FUNDING: This study was funded by a grant from National Health and Medical Research Council.